Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24782872
PubMed Central
PMC3986533
DOI
10.3389/fpls.2014.00126
Knihovny.cz E-zdroje
- Klíčová slova
- phosphate translocator, phosphoenolpyruvate, plastids, reticulate mutants, secondary metabolism,
- Publikační typ
- časopisecké články MeSH
Phosphoenolpyruvate (PEP) serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA) and subsequently secondary plant products. After conversion to pyruvate, PEP can also enter de novo fatty acid biosynthesis, the synthesis of branched-chain amino acids, and the non-mevalonate way of isoprenoid production. As PEP cannot be generated by glycolysis in chloroplasts and a variety of non-green plastids, it has to be imported from the cytosol by a phosphate translocator (PT) specific for PEP (PPT). A loss of function of PPT1 in Arabidopsis thaliana results in the chlorophyll a/b binding protein underexpressed1 (cue1) mutant, which is characterized by reticulate leaves and stunted roots. Here we dissect the shoot- and root phenotypes, and also address the question whether or not long distance signaling by metabolites is involved in the perturbed mesophyll development of cue1. Reverse grafting experiments showed that the shoot- and root phenotypes develop independently from each other, ruling out long distance metabolite signaling. The leaf phenotype could be transiently modified even in mature leaves, e.g. by an inducible PPT1RNAi approach or by feeding AAA, the cytokinin trans-zeatin (tZ), or the putative signaling molecule dehydrodiconiferyl alcohol glucoside (DCG). Hormones, such as auxins, abscisic acid, gibberellic acid, ethylene, methyl jasmonate, and salicylic acid did not rescue the cue1 leaf phenotype. The low cell density1 (lcd1) mutant shares the reticulate leaf-, but not the stunted root phenotype with cue1. It could neither be rescued by AAA nor by tZ. In contrast, tZ and AAA further inhibited root growth both in cue1 and wild-type plants. Based on our results, we propose a model that PPT1 acts as a net importer of PEP into chloroplast, but as an overflow valve and hence exporter in root plastids.
Department of Botany 2 Cologne Biocenter University of Cologne Cologne Germany
Institut für Biochemie der Pflanzen Heinrich Heine Universität Düsseldorf Düsseldorf Germany
Zobrazit více v PubMed
Alvarez S., Marsh E. L., Schroeder S. G., Schachtman D. P. (2008). Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 31, 325–340 10.1111/j.1365-3040.2007.01770.x PubMed DOI
Andre C., Froehlich J. E., Moll M. R., Benning C. (2007). A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19, 2006–2022 10.1105/tpc.106.048629 PubMed DOI PMC
Barth C., Conklin P. L. (2003). The lower cell density of leaf parenchyma in the Arabidopsis thaliana mutant lcd1-1 is associated with increased sensitivity to ozone and virulent Pseudomonas syringae. Plant J. 35, 206–218 10.1046/j.1365-313X.2003.01795.x PubMed DOI
Baud S., Wuille‘me S., Dubreucq B., de Almeida A., Vuagnat C., Lepiniec L., et al. (2007). Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 52, 405–419 10.1111/j.1365-313X.2007.03232.x PubMed DOI
Benstein R. M., Ludewig K., Wulfert S., Wittek S., Gigolashvili T., Frerigmann H., et al. (2013). Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell 25, 5011–5029 10.1105/tpc.113.118992 PubMed DOI PMC
Bent A. (2006). Arabidopsis thaliana floral dip transformation. Method. Mol. Biol. 343, 87–104 10.1385/1-59745-130-4:87 PubMed DOI
Bhargava A., Clabaugh I., To J. P., Maxwell B. B., Chiang Y. H., Schaller G. E., et al. (2013). Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 162, 272–294 10.1104/pp.113.217026 PubMed DOI PMC
Binns A. N., Chen R. H., Wood H. N., Lynn D. G. (1987). Cell-division promoting activity of naturally-occurring dehydrodiconiferyl glucosides - do cell-wall components control cell-division. Proc. Natl. Acad. Sci. U.S.A. 84, 980–984 10.1073/pnas.84.4.980 PubMed DOI PMC
Brenner W. G., Romanov G. A., Köllmer I., Bürkle L., Schmülling T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44, 314–333 10.1111/j.1365-313X.2005.02530.x PubMed DOI
Brenner W. G., Schmülling T. (2012). Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 12:112 10.1186/1471-2229-12-112 PubMed DOI PMC
Byrne M. E. (2012). Making leaves. Curr. Opin. Plant Biol. 15, 24–30 10.1016/j.pbi.2011.10.009 PubMed DOI
Caddick M. X., Greenland A. J., Jepson I., Krause K. P., Qu N., Riddell K. V., et al. (1998). An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat. Biotechnol. 16, 177–180 10.1038/nbt0298-177 PubMed DOI
Carretero-Paulet L., Ahumada I., Cunillera N., Rodríguez-Concepción M., Ferrer A., Boronat A., et al. (2002). Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol. 129, 1581–1591 10.1104/pp.003798 PubMed DOI PMC
Cary A. J., Liu W., Howell S. H. (1995). Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 107, 1075–1082 10.1104/pp.107.4.1075 PubMed DOI PMC
Cascales-Miñana B., Muñoz-Bertomeu J., Flores-Tornero M., Anoman A. D., Pertusa J., Alaiz M., et al. (2013). The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis. Plant Cell. 6, 2084–2101 10.1105/tpc.113.112359 PubMed DOI PMC
Christmann A., Weiler E. W., Steudle E., Grill E. (2007). A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 52, 167–174 10.1111/j.1365-313X.2007.03234.x PubMed DOI
del Rio L. A., Corpas F. J., Barroso J. B. (2004). Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65, 783–792 10.1016/j.phytochem.2004.02.001 PubMed DOI
Eicks M., Maurino V., Knappe S., Flügge U. I., Fischer K. (2002). The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol. 128, 512–522 10.1104/pp.010576 PubMed DOI PMC
Estévez J. M., Cantero A., Romero C., Kawaide H., Jiménez L. F., Kuzuyama T., León P., et al. (2000). Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiol. 124, 95–104 10.1104/pp.124.1.95 PubMed DOI PMC
Fischer K., Kammerer B., Gutensohn M., Arbinger B., Weber A., Häusler R. E., et al. (1997). A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9, 453–462 10.1105/tpc.9.3.453 PubMed DOI PMC
Fliege R., Flügge U. I., Werdan K., Heldt H. W. (1978). Specific transport of inorganic-phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach-chloroplasts. Biochim. Biophys. Acta 502, 232–247 10.1016/0005-2728(78)90045-2 PubMed DOI
Flügge U. I., Fischer K., Gross A., Sebald W., Lottspeich F., Eckerskorn C. (1989). The triose phosphate-3-phosphoglycerate phosphate translocator from spinach-chloroplasts - nucleotide-sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. Embo J. 8, 39–46 PubMed PMC
Flügge U. I., Häusler R. E., Ludewig F., Gierth M. (2011). The role of transporters in supplying energy to plant plastids. J. Exp. Bot. 627, 2381–2392 10.1093/jxb/erq361 PubMed DOI
Furumoto T., Yamaguchi T., Ohshima-Ichie Y., Nakamura M., Tsuchida-Iwata Y., Shimamura M., et al. (2011). A plastidial sodium-dependent pyruvate transporter. Nature 24, 472–475 10.1038/nature10250 PubMed DOI
Gális I., Simek P., Van Onckelen H. A., Kakiuchi Y., Wabiko H. (2002). Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. Plant Cell Physiol. 43, 939–950 10.1093/pcp/pcf112 PubMed DOI
Gas E., Flores-Pérez U., Sauret-Güeto S., Rodríguez-Concepción M. (2009). Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell. 21, 18–23 10.1105/tpc.108.065243 PubMed DOI PMC
González-Bayón R., Kinsman E. A., Quesada V., Vera A., Robles P., Ponce M. R., et al. (2006). Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. J. Exp. Bot. 57, 3019–3031 10.1093/jxb/erl063 PubMed DOI
Guo F. Q., Okamoto M., Crawford N. M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100–103 10.1126/science.1086770 PubMed DOI
Gutierrez C. (2009). The Arabidopsis cell division cycle. Arabidopsis Book 7, e0120 10.1199/tab.0120 PubMed DOI PMC
Häusler R. E., Baur B., Scharte J., Teichmann T., Eicks M., Fischer K. L., et al. (2000). Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Plant J. 24, 285–296 10.1046/j.1365-313x.2000.00876.x PubMed DOI
He Y., Tang R. H., Hao Y., Stevens R. D., Cook C. W., Ahn S. M., et al. (2004). Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968–1971 10.1126/science.1098837 PubMed DOI
Herrmann K. M. (1995). The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7, 907–919 10.2307/3870046 PubMed DOI PMC
Herrmann K. M., Weaver L. M. (1999). The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 473–503 10.1146/annurev.arplant.50.1.473 PubMed DOI
Hibberd J. M., Quick W. P. (2002). Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415, 451–454 10.1038/415451a PubMed DOI
Horiguchi G., Fujikura U., Ferjani A., Ishikawa N., Tsukaya H. (2006). Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J. 48, 638–644 10.1111/j.1365-313X.2006.02896.x PubMed DOI
Howell S. H., Lall S., Che P. (2003). Cytokinins and shoot development. Trends Plant Sci. 8, 453–459 10.1016/S1360-1385(03)00191-2 PubMed DOI
Hung W. F., Chen L. J., Boldt R., Sun C. W., Li H. M. (2004). Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants. Plant Physiol. 135, 1314–1323 10.1104/pp.104.040956 PubMed DOI PMC
Jing Y., Cui D., Bao F., Hu Z., Qin Z., Hu Y. (2009). Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant J. 57, 511–521 10.1111/j.1365-313X.2008.03706.x PubMed DOI
Journet E. P., Douce R. (1985). Enzymic capacities of purified cauliflower bud plastids for lipid-synthesis and carbohydrate-metabolism. Plant Physiol. 79, 458–467 10.1104/pp.79.2.458 PubMed DOI PMC
Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A., et al. (1998). Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell 10, 105–117 10.2307/3870632 PubMed DOI PMC
Kasahara H., Takei K., Ueda N., Hishiyama S., Yamaya T., Kamiya Y., et al. (2004). Distinct isoprenoid origins of cis- and trans-zeatin biosynthesis in Arabidopsis. J. Biol. Chem. 279, 14049–14054 10.1074/jbc.M314195200 PubMed DOI
Kinsman E. A., Pyke K. A. (1998). Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development 125, 1815–1822 PubMed
Knappe S., Flügge U. I., Fischer K. (2003a) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol. 131, 1178–1190 10.1104/pp.016519 PubMed DOI PMC
Knappe S., Löttgert T., Schneider A., Voll L., Flügge U. I., Fischer K. (2003b) Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis - AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J. 36, 411–420 10.1046/j.1365-313X.2003.01888.x PubMed DOI
Kunz H. H., Häusler R. E., Fettke J., Herbst K., Niewiedomski P., Gierth M., et al. (2010). The role of plastidial glucose 6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol. 12, 115–128 10.1111/j.1438-8677.2010.00349.x PubMed DOI
Langdale J. A. (2011). C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23, 3879–3892 10.1105/tpc.111.092098 PubMed DOI PMC
Lichtenthaler H. K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47–65 10.1146/annurev.arplant.50.1.47 PubMed DOI
Li H., Culligan K., Dixon R. A., Chory J. (1995). CUE1: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis. Plant Cell 7, 1599–1610 10.2307/3870022 PubMed DOI PMC
Li Z., Sharkey T. D. (2013). Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ. 36, 429–437 10.1111/j.1365-3040.2012.02584.x PubMed DOI
Lindroth P., Mopper K. (1979). High-performance liquid-chromatographic determination of subpicomole amounts of amino-acids by precolumn fluorescence derivatization with ortho-phthaldialdehyde. Anal. Chem. 51, 1667–1674 10.1021/ac50047a019 DOI
Ljung K. (2013). Auxin metabolism and homeostasis during plant development. Development 140, 943–950 10.1242/dev.086363 PubMed DOI
Logemann J., Schell J., Willmitzer L. (1987). Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 16–20 10.1016/0003-2697(87)90086-8 PubMed DOI
Lopez-Juez E., Jarvis R. P., Takeuchi A., Page A. M., Chory J. (1998). New Arabidopsis cue mutants suggest a close connection between plastid- and phytochrome regulation of nuclear gene expression. Plant Physiol. 118, 803–815 10.1104/pp.118.3.803 PubMed DOI PMC
Ludbrook J. (1998). Multiple comparison procedures updated. Clin. Exp. Pharmacol. Physiol. 25, 1032–1037 10.1111/j.1440-1681.1998.tb02179.x PubMed DOI
Lundquist P. K., Rosar C., Bräutigam A., Weber A. P. (2013). Plastid signals and the bundle sheath: mesophyll development in reticulate mutants. Mol. Plant 7, 14–29 10.1093/mp/sst133 PubMed DOI
Lynn D. G., Chen R. H., Manning K. S., Woo H. N. (1987). The structural characterization of endogenous factors from vinca-rosea crown gall tumors that promote cell-division of tobacco cells. Proc. Natl. Acad. Sci. U.S.A. 84, 615–619 10.1073/pnas.84.3.615 PubMed DOI PMC
Maeda H., Dudareva N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 10.1146/annurev-arplant-042811-105439 PubMed DOI
Mok D. W., Mok M. C. (2001). Cytokinin metabolism and action. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 52, 89–118 10.1146/annurev.arplant.52.1.89 PubMed DOI
Mollá-Morales A., Sarmiento-Mañús R., Robles P., Quesada V., Pérez-Pérez J. M., González-Bayón R., et al. (2011). Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant J. 265, 335–345 10.1111/j.1365-313X.2010.04425.x PubMed DOI
Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51(Pt 1), 263–273 10.1101/SQB.1986.051.01.032 PubMed DOI
Novák O., Hauserová E., Amakorová P., DoleŽal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224 10.1016/j.phytochem.2008.04.022 PubMed DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. (2012). Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72, 523–536 10.1111/j.1365-313X.2012.05085.x PubMed DOI
Ohlrogge J. B., Jaworski J. G. (1997). Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Mol. Biol. 48, 109–136 10.1146/annurev.arplant.48.1.109 PubMed DOI
Orr J. D., Lynn D. G. (1992). Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol. 98, 343–352 10.1104/pp.98.1.343 PubMed DOI PMC
Phillips M. A., León P., Boronat A., Rodríguez-Concepción M. (2003). The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci. 13, 619–623 10.1016/j.tplants.2008.09.003 PubMed DOI
Prabhakar V., Löttgert T., Geimer S., Dörmann P., Krüger S., Vijayakumar V., et al. (2010). Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22, 2594–2617 10.1105/tpc.109.073171 PubMed DOI PMC
Prabhakar V., Löttgert T., Gigolashvili T., Bell K., Flügge U. I., Häusler R. E. (2009). Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase ENO1 from Arabidopsis thaliana. FEBS Let. 583, 983–991 10.1016/j.febslet.2009.02.017 PubMed DOI
Rédei G. P., Hirono Y. (1964). Linkage studies. Arabidopsis Info. Serv. 1, 9–10
Rosar C., Kanonenberg K., Nanda A. M., Mielewczik M., Bräutigam A., Novák O., et al. (2012). The leaf reticulate mutant dov1 is impaired in the first step of purine metabolism. Mol. Plant 5, 1227–1241 10.1093/mp/sss045 PubMed DOI
Schmid J., Amrhein N. (1995). Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39, 737–749 10.1016/0031-9422(94)00962-S DOI
Schulze-Siebert D., Heineke D., Scharf H., Schultz G. (1984). Pyruvate-derived amino-acids in spinach-chloroplasts - synthesis and regulation during photosynthetic carbon metabolism. Plant Physiol. 76, 465–471 10.1104/pp.76.2.465 PubMed DOI PMC
Schwacke R., Flügge U. I., Kunze R. (2004). Plant membrane protein databases. Plant Physiol. Biochem. 42, 1023–1034 10.1016/j.plaphy.2004.09.011 PubMed DOI
Schwender J., Ohlrogge J. B. (2002). Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol. 130, 347–361 10.1104/pp.004275 PubMed DOI PMC
Selinski J., König N., Wellmeyer B., Hanke G. T., Linke V., Neuhaus H. E., et al. (2014). The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol. Plant. 7, 170–186 10.1093/mp/sst151 PubMed DOI
Singh B. K., Shaner D. L. (1995). Biosynthesis of branched chain amino acids: from test Tube to field. Plant Cell 7, 935–944 10.2307/3870048 PubMed DOI PMC
Stitt M., Ap Rees T. (1979). Capacities of pea-chloroplasts to catalyze the oxidative pentose-phosphate pathway and glycolysis. Phytochemistry 18, 1905–1911 10.1016/S0031-9422(00)82700-4 DOI
Streatfield S. J., Weber A., Kinsman E. A., Häusler R. E., Li J., Post-Beittenmiller D., et al. (1999). The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11, 1609–1622 10.2307/3871041 PubMed DOI PMC
Tamagnone L., Merida A., Parr A., Mackay S., Culianez-Macia F. A., Roberts K., et al. (1998a). The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10, 135–154 10.2307/3870694 PubMed DOI PMC
Tamagnone L., Merida A., Stacey N., Plaskitt K., Parr A., Chang C. F., et al. (1998b). Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10, 1801–1816 10.2307/3870905 PubMed DOI PMC
Teutonico R. A., Dudley M. W., Orr J. D., Lynn D. G., Binns A. N. (1991). Activity and accumulation of cell division-promoting phenolics in tobacco tissue-cultures. Plant Physiol. 97, 288–297 10.1104/pp.97.1.288 PubMed DOI PMC
Tzin V., Galili G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 3, 956–972 10.1093/mp/ssq048 PubMed DOI
Vinti G., Fourrier N., Bowyer J. R., Lopez-Juez E. (2005). Arabidopsis cue mutants with defective plastids are impaired primarily in the photocontrol of expression of photosynthesis-associated nuclear genes. Plant Mol. Biol. 57, 343–357 10.1007/s11103-004-7867-8 PubMed DOI
Voll L., Häusler R. E., Hecker R., Weber A., Weissenböck G., Fiene G., et al. (2003). The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway. Plant J. 36, 301–317 10.1046/j.1365-313X.2003.01889.x PubMed DOI
Voll L. M., Allaire E. E., Fiene G., Weber A. P. (2004). The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism. Plant Physiol. 136, 3058–3069 10.1104/pp.104.047506 PubMed DOI PMC
Voll L. M., Hajirezaei M. R., Czogalla-Peter C., Lein W., Stitt M., Sonnewald U., et al. (2009). Antisense inhibition of enolase strongly limits the metabolism of aromatic amino acids, but has only minor effects on respiration in leaves of transgenic tobacco plants. New Phytol. 184, 607–618 10.1111/j.1469-8137.2009.02998.x PubMed DOI
Welch B. L. (1947). The generalization of “student's” problem when several different population variances are involved. Biometrika 34, 28–35 PubMed
Wendehenne D., Pugin A., Klessig D. F., Durner J. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6, 177–183 10.1016/S1360-1385(01)01893-3 PubMed DOI
Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmülling T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550 10.1105/tpc.014928 PubMed DOI PMC
Werner T., Motyka V., Strnad M., Schmülling T. (2001). Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. U.S.A. 98, 10487–10492 10.1073/pnas.171304098 PubMed DOI PMC
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G. V., Provart N. J. (2002). An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718 10.1371/journal.pone.0000718 PubMed DOI PMC
Winter H., Lohaus G., Heldt H. W. (1992). Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol. 99, 996–1004 10.1104/pp.99.3.996 PubMed DOI PMC
Zeier J., Delledonne M., Mishina T., Severi E., Sonoda M., Lamb C. (2004). Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol. 136, 2875–2886 10.1104/pp.104.042499 PubMed DOI PMC