MicroRNA profiling of activated and tolerogenic human dendritic cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24799764
PubMed Central
PMC3995309
DOI
10.1155/2014/259689
Knihovny.cz E-zdroje
- MeSH
- dendritické buňky účinky léků metabolismus MeSH
- faktor stimulující granulocyto-makrofágové kolonie farmakologie MeSH
- interleukin-10 farmakologie MeSH
- interleukin-4 farmakologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- mikro RNA genetika MeSH
- průtoková cytometrie MeSH
- transformující růstový faktor beta farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor stimulující granulocyto-makrofágové kolonie MeSH
- interleukin-10 MeSH
- interleukin-4 MeSH
- lipopolysacharidy MeSH
- mikro RNA MeSH
- MIRN10 microRNA, human MeSH Prohlížeč
- MIRN133 microRNA, human MeSH Prohlížeč
- MIRN17 microRNA, human MeSH Prohlížeč
- MIRN203 microRNA, human MeSH Prohlížeč
- MIRN210 microRNA, human MeSH Prohlížeč
- MIRN30b microRNA, human MeSH Prohlížeč
- MIRN449 microRNA, human MeSH Prohlížeč
- transformující růstový faktor beta MeSH
Dendritic cells (DCs) belong to the immune system and are particularly studied for their potential to direct either an activated or tolerogenic immune response. The roles of microRNAs (miRNAs) in posttranscriptional gene expression regulation are being increasingly investigated. This study's aim is to evaluate the miRNAs' expression changes in prepared human immature (iDCs), activated (aDCs), and tolerogenic dendritic cells (tDCs). The dendritic cells were prepared using GM-CSF and IL-4 (iDC) and subsequently maturated by adding LPS and IFN-γ (aDC) or IL-10 and TGF-β (tDC). Surface markers, cytokine profiles, and miRNA profiles were evaluated in iDC, tDC, and aDC at 6 h and 24 h of maturation. We identified 4 miRNAs (miR-7, miR-9, miR-155 and miR-182), which were consistently overexpressed in aDC after 6 h and 24 h of maturation and 3 miRNAs (miR-17, miR-133b, and miR-203) and miR-23b cluster solely expressed in tDC. We found 5 miRNAs (miR-10a, miR-203, miR-210, miR-30a, and miR-449b) upregulated and 3 miRNAs downregulated (miR-134, miR-145, and miR-149) in both tDC and aDC. These results indicate that miRNAs are specifically modulated in human DC types. This work may contribute to identifying specific modulating miRNAs for aDC and tDC, which could in the future serve as therapeutic targets in the treatment of cancer and autoimmune diseases.
Zobrazit více v PubMed
Felzmann T, Hüttner KG, Breuer SK, et al. Semi-mature IL-12 secreting dendritic cells present exogenous antigen to trigger cytolytic immune responses. Cancer Immunology, Immunotherapy. 2005;54(8):769–780. PubMed PMC
Vopenkova K, Mollova K, Buresova I, Michalek J. Complex evaluation of human monocyte-derived dendritic cells for cancer immunotherapy. Journal of Cellular and Molecular Medicine. 2012;16(1):2827–2837. PubMed PMC
Penna G, Adorini L. 1α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. The Journal of Immunology. 2000;164(5):2405–2411. PubMed
Steinbrink K, Wölfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. The Journal of Immunology. 1997;159(10):4772–4780. PubMed
Lutz MB. Therapeutic potential of semi-mature dendritic cells for tolerance induction. Frontiers in Immunology. 2012;3, article 123 PubMed PMC
Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews. 2006;212(1):28–50. PubMed
Freudenthal PS, Steinman RM. The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(19):7698–7702. PubMed PMC
Zhou L-J, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. The Journal of Immunology. 1995;154(8):3821–3835. PubMed
Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annual Review of Immunology. 2000;18:767–811. PubMed
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–661. PubMed PMC
Mohty M, Nagler A, Kroger N, Gaugler B. Immunobiology and pharmacologic manipulation of dendritic and regulatory cells. Clinical and Developmental Immunology. 2013;2013:2 pages.186983
Dohnal AM, Graffi S, Witt V, et al. Comparative evaluation of techniques for the manufacturing of dendritic cell-based cancer vaccines. Journal of Cellular and Molecular Medicine. 2009;13(1):125–135. PubMed PMC
Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunology. 2000;1(4):311–316. PubMed
Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function. The Journal of Immunology. 2011;187(8):3911–3917. PubMed
Homey B. MicroRNA: a new level of immune regulation. Hautarzt. 2007;58(6):553–554. PubMed
Koval’chuk LV, Gankovskaia LV, Akimova EA. Role of microRNA in regulation of innate immunity mechanisms. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. 2009;(3):100–104. PubMed
Liston A, Linterman M, Lu L-F. MicroRNA in the adaptive immune system, in sickness and in health. Journal of Clinical Immunology. 2010;30(3):339–346. PubMed
Lu L-F, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. 2009;127(3):291–298. PubMed PMC
Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nature Genetics. 2005;37(5):495–500. PubMed
Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 2007;27(4):635–646. PubMed
Zhang M, Liu F, Jia H, et al. Inhibition of microRNA let-7i depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. The Journal of Immunology. 2011;187(4):1674–1683. PubMed
Felzmann T, Witt V, Wimmer D, et al. Monocyte enrichment from leukapharesis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy. 2003;5(5):391–398. PubMed
Vasu C, Wang A, Gorla SR, Kaithamana S, Prabhakar BS, Holterman MJ. CD80 and CD86 C domains play an important role in receptor binding and co-stimulatory properties. International Immunology. 2003;15(2):167–175. PubMed
Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nature Immunology. 2008;9(8):839–845. PubMed
Lindsay MA. MicroRNAs and the immune response. Trends in Immunology. 2008;29(7):343–351. PubMed
Lodish HF, Zhou B, Liu G, Chen C-Z. Micromanagement of the immune system by microRNAs. Nature Reviews Immunology. 2008;8(2):120–130. PubMed
Pauley KM, Chan EKL. MicroRNAs and their emerging roles in immunology. Annals of the New York Academy of Sciences. 2008;1143:226–239. PubMed
Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136(1):26–36. PubMed
Tsitsiou E, Lindsay MA. MicroRNAs and the immune response. Current Opinion in Pharmacology. 2009;9(4):514–520. PubMed PMC
Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(33):12481–12486. PubMed PMC
Stittrich A-B, Haftmann C, Sgouroudis E, et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nature Immunology. 2010;11(11):1057–1062. PubMed
Vasilescu C, Rossi S, Shimizu M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE. 2009;4(10)e7405 PubMed PMC
Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood. 2011;117(16):4293–4303. PubMed PMC
Holmstrøm K, Pedersen AW, Claesson MH, Zocca M-B, Jensen SS. Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy. Human Immunology. 2010;71(1):67–73. PubMed
Boks MA, Kager-Groenland JR, Haasjes MSP, Zwaginga JJ, van Ham SM, ten Brinke A. IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction—a comparative study of human clinical-applicable DC. Clinical Immunology. 2012;142(3):332–342. PubMed
Jiga LP, Bauer TM, Chuang J-J, Opelz G, Terness P. Generation of tolerogenic dendritic cells by treatment with mitomycin C: inhibition of allogeneic T-cell response is mediated by downregulation of ICAM-1, CD80, and CD86. Transplantation. 2004;77(11):1761–1764. PubMed
McBride JM, Jung T, de Vries JE, Aversa G. IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cellular Immunology. 2002;215(2):162–172. PubMed
Palma JP, Yauch RL, Kang H-K, Lee H-G, Kim BS. Preferential induction of IL-10 in APC correlates with a switch from TH1 to TH2 response following infection with a low pathogenic variant of Theiler’s virus. The Journal of Immunology. 2002;168(8):4221–4230. PubMed
Cox MB, Cairns MJ, Gandhi KS, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS ONE. 2010;5(8)e12132 PubMed PMC
Haas JD, Nistala K, Petermann F, et al. Expression of miRNAs miR-133b and miR-206 in the Il17a/flocus is co-regulated with IL-17 production in αβ and γδ T cells. PLoS ONE. 2011;6(5)e20171 PubMed PMC
Pollari S, Leivonen SK, Perala M, Fey V, Kakonen SM, Kallioniemi O. Identification of microRNAs inhibiting TGF-β-induced IL-11 production in bone metastatic breast cancer cells. PLoS ONE. 2012;7(5)e37361 PubMed PMC
Zheng J, Jiang H-Y, Li J, et al. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy. 2012;67(3):362–370. PubMed
Rogler CE, LeVoci L, Ader T, et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-β/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology. 2009;50(2):575–584. PubMed
Honda N, Jinnin M, Kajihara I, et al. TGF-β-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. The Journal of Immunology. 2012;188(7):3323–3331. PubMed
Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ . Nature Immunology. 2011;12(9):861–869. PubMed
Liu X, Zhan Z, Xu L, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα . The Journal of Immunology. 2010;185(12):7244–7251. PubMed
Li Z, Wu F, Brant SR, Kwon JH. IL-23 receptor regulation by Let-7f in human CD4+ memory T cells. The Journal of Immunology. 2011;186(11):6182–6190. PubMed PMC
Liu G, Friggeri A, Yang Y, Park Y-J, Tsuruta Y, Abraham E. miR-147, a microRNA that is induced upon toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(37):15819–15824. PubMed PMC
Jeker LT, Zhou X, Gershberg K, et al. MicroRNA 10a marks regulatory T cells. PLoS ONE. 2012;7(5)e36684 PubMed PMC
Takahashi H, Kanno T, Nakayamada S, et al. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nature Immunology. 2012;13(6):587–595. PubMed PMC
Lizé M, Pilarski S, Dobbelstein M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death and Differentiation. 2010;17(3):452–458. PubMed
Bian K, Fan J, Zhang X, et al. MicroRNA-203 leads to G1 phase cell cycle arrest in laryngeal carcinoma cells by directly targeting survivin. FEBS Letters. 2012;586(6):804–809. PubMed
Zhang X, Wang H, Zhang S, et al. MiR-134 functions as a regulator of cell proliferation, apoptosis, and migration involving lung septation. In Vitro Cellular and Developmental Biology—Animal. 2012;48(2):131–136. PubMed