Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells

. 2014 ; 5 () : 132. [epub] 20140514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24860598

Several studies have demonstrated the important role of non-coding RNAs as regulators of posttranscriptional processes, including stem cells self-renewal and neural differentiation. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show enormous potential in regenerative medicine due to their capacity to differentiate to virtually any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency, self-renewal and neural differentiation will reveal new molecular mechanisms involved in induction and maintenances of pluripotent state as well as triggering these cells toward clinically relevant cells for transplantation. In this brief review we will summarize recently published studies which reveal the role of non-coding RNAs in pluripotency and neural differentiation of hESCs and ihPSC.

Zobrazit více v PubMed

Anokye-Danso F., Snitow M., Morrisey E. E. (2012). How microRNAs facilitate reprogramming to pluripotency. J. Cell Sci. 125 4179–4187 10.1242/jcs.095968 PubMed DOI PMC

Anokye-Danso F., Trivedi C. M., Juhr D., Gupta M., Cui Z., Tian Y., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8 376–388 10.1016/j.stem.2011.03.001 PubMed DOI PMC

Bar M., Wyman S. K., Fritz B. R., Qi J., Garg K. S., Parkin R. K., et al. (2008). MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26 2496–2505 10.1634/stemcells.2008-0356 PubMed DOI PMC

Biancotti J. C., Narwani K., Buehler N., Mandefro B., Golan-Lev T., Yanuka O., et al. (2010). Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28 1530–1540 10.1002/stem.483 PubMed DOI

Boissart C., Nissan X., Giraud-Triboult K., Peschanski M., Benchoua A. (2012). miR-125 potentiates early neural specification of human embryonic stem cells. Development 139 1247–1257 10.1242/dev.073627 PubMed DOI

Boyer L. A., Lee T. I., Cole M. F., Johnstone S. E., Levine S. S., Zucker J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 947–956 10.1016/j.cell.2005.08.020 PubMed DOI PMC

Boyer L. A., Plath K., Zeitlinger J., Brambrink T., Medeiros L. A., Lee T. I., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441 349–353 10.1038/nature04733 PubMed DOI

Buganim Y., Faddah D. A., Cheng A. W., Itskovich E., Markoulaki S., Ganz K., et al. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150 1209–1222 10.1016/j.cell.2012.08.023 PubMed DOI PMC

Cocks G., Curran S., Gami P., Uwanogho D., Jeffries A. R., Kathuria A., et al. (2013). The utility of patient specific induced pluripotent stem cells for the modelling of autistic spectrum disorders. Psychopharmacology (Berl.) 231 1079–1088 10.1007/s00213-013-3196-4 PubMed DOI PMC

Du Z. W., Ma L. X., Phillips C., Zhang S. C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 140 2611–2618 10.1242/dev.092809 PubMed DOI PMC

Erceg S., Lainez S., Ronaghi M., Stojkovic P., Perez-Arago M. A., Moreno-Manzano V., et al. (2008). Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS ONE 3:e2122 10.1371/journal.pone.0002122 PubMed DOI PMC

Erceg S., Lukovic D., Moreno-Manzano V., Stojkovic M., Bhattacharya S. S. (2012). Derivation of cerebellar neurons from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. Chap. 1, Unit 1H.5. 10.1002/9780470151808.sc01h05s20 PubMed DOI

Erceg S., Ronaghi M., Oria M., Rosello M. G., Arago M. A., Lopez M. G., et al. (2010). Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 28 1541–1549 10.1002/stem.489 PubMed DOI PMC

Erceg S., Ronaghi M., Stojkovic M. (2009). Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27 78–87 10.1634/stemcells.2008-0543 PubMed DOI PMC

Gifford C. A., Ziller M. J., Gu H., Trapnell C., Donaghey J., Tsankov A., et al. (2013). Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153 1149–1163 10.1016/j.cell.2013.04.037 PubMed DOI PMC

Gross B., Sgodda M., Rasche M., Schambach A., Gohring G., Schlegelberger B., et al. (2013). Improved generation of patient-specific induced pluripotent stem cells using a chemically-defined and matrigel-based approach. Curr. Mol. Med. 13 765–776 10.2174/1566524011313050008 PubMed DOI

Gunaseeli I., Doss M. X., Antzelevitch C., Hescheler J., Sachinidis A. (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr. Med. Chem. 17 759–766 10.2174/092986710790514480 PubMed DOI PMC

Guttman M., Amit I., Garber M., French C., Lin M. F., Feldser D., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 223–227 10.1038/nature07672 PubMed DOI PMC

Guttman M., Donaghey J., Carey B. W., Garber M., Grenier J. K., Munson G., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477 295–300 10.1038/nature10398 PubMed DOI PMC

Guttman M., Rinn J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature 482 339–346 10.1038/nature10887 PubMed DOI PMC

Hafner M., Landgraf P., Ludwig J., Rice A., Ojo T., Lin C., et al. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44 3–12 10.1016/j.ymeth.2007.09.009 PubMed DOI PMC

Hargus G., Cooper O., Deleidi M., Levy A., Lee K., Marlow E., et al. (2010). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. U.S.A. 107 15921–15926 10.1073/pnas.1010209107 PubMed DOI PMC

Hu B. Y., Weick J. P., Yu J., Ma L. X., Zhang X. Q., Thomson J. A., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. U.S.A. 107 4335–4340 10.1073/pnas.0910012107 PubMed DOI PMC

Jin Z. B., Okamoto S., Osakada F., Homma K., Assawachananont J., Hirami Y., et al. (2011). Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS ONE 6:e17084 10.1371/journal.pone.0017084 PubMed DOI PMC

Jin Z. B., Okamoto S., Xiang P., Takahashi M. (2012). Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl. Med. 1 503–509 10.5966/sctm.2012-0005 PubMed DOI PMC

Kawasaki H., Mizuseki K., Nishikawa S., Kaneko S., Kuwana Y., Nakanishi S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28 31–40 10.1016/S0896-6273(00)00083-0 PubMed DOI

Kawasaki H., Suemori H., Mizuseki K., Watanabe K., Urano F., Ichinose H., et al. (2002). Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. U.S.A. 99 1580–1585 10.1073/pnas.03266219 PubMed DOI PMC

Kim H., Lee G., Ganat Y., Papapetrou E. P., Lipchina I., Socci N. D., et al. (2011). miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8 695–706 10.1016/j.stem.2011.04.002 PubMed DOI

Kim J. B., Sebastiano V., Wu G., Arauzo-Bravo M. J., Sasse P., Gentile L., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell 136 411–419 10.1016/j.cell.2009.01.023 PubMed DOI

Kumano K., Arai S., Hosoi M., Taoka K., Takayama N., Otsu M., et al. (2012). Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 119 6234–6242 10.1182/blood-2011-07-367441 PubMed DOI

Landgraf P., Rusu M., Sheridan R., Sewer A., Iovino N., Aravin A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129 1401–1414 10.1016/j.cell.2007.04.040 PubMed DOI PMC

Lee T. H., Song S. H., Kim K. L., Yi J. Y., Shin G. H., Kim J. Y., et al. (2010). Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ. Res. 106 120–128 10.1161/CIRCRESAHA.109.207902 PubMed DOI

Lee T. I., Jenner R. G., Boyer L. A., Guenther M. G., Levine S. S., Kumar R. M., et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125 301–313 10.1016/j.cell.2006.02.043 PubMed DOI PMC

Li Z., Yang C. S., Nakashima K., Rana T. M. (2011). Small RNA-mediated regulation of iPS cell generation. EMBO J. 30 823–834 10.1038/emboj.2011.2 PubMed DOI PMC

Lin M., Pedrosa E., Shah A., Hrabovsky A., Maqbool S., Zheng D., et al. (2011). RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS ONE 6:e23356 10.1371/journal.pone.0023356 PubMed DOI PMC

Lipchina I., Elkabetz Y., Hafner M., Sheridan R., Mihailovic A., Tuschl T., et al. (2011). Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev. 25 2173–2186 10.1101/gad.17221311 PubMed DOI PMC

Liu J., Githinji J., Mclaughlin B., Wilczek K., Nolta J. (2012). Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev. 8 1129–1137 10.1007/s12015-012-9411-6 PubMed DOI PMC

Loewer S., Cabili M. N., Guttman M., Loh Y. H., Thomas K., Park I. H., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42 1113–1117 10.1038/ng.710 PubMed DOI PMC

Miyoshi N., Ishii H., Nagano H., Haraguchi N., Dewi D. L., Kano Y., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8 633–638 10.1016/j.stem.2011.05.001 PubMed DOI

Morozova O., Marra M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics 92 255–264 10.1016/j.ygeno.2008.07.001 PubMed DOI

Mortazavi A., Williams B. A., Mccue K., Schaeffer L., Wold B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5 621–628 10.1038/nmeth.1226 PubMed DOI

Ng S. Y., Johnson R., Stanton L. W. (2012). Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 31 522–533 10.1038/emboj.2011.459 PubMed DOI PMC

Oh Y., Wei H., Ma D., Sun X., Liew R. (2012). Clinical applications of patient-specific induced pluripotent stem cells in cardiovascular medicine. Heart 98 443–449 10.1136/heartjnl-2011-301317 PubMed DOI PMC

Pedrosa E., Sandler V., Shah A., Carroll R., Chang C., Rockowitz S., et al. (2011). Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J. Neurogenet. 25 88–103 10.3109/01677063.2011.597908 PubMed DOI

Plath K., Lowry W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet. 12 253–265 10.1038/nrg2955 PubMed DOI PMC

Postigo A. A., Depp J. L., Taylor J. J., Kroll K. L. (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22 2453–2462 10.1093/emboj/cdg226 PubMed DOI PMC

Roese-Koerner B., Stappert L., Koch P., Brustle O., Borghese L. (2013). Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr. Mol. Med. 13 707–722 10.2174/1566524011313050003 PubMed DOI

Rosa A., Brivanlou A. H. (2011). A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J. 30 237–248 10.1038/emboj.2010.319 PubMed DOI PMC

Roukos D. H. (2010). Next-generation sequencing and epigenome technologies: potential medical applications. Expert Rev. Med. Devices 7 723–726 10.1586/erd.10.68 PubMed DOI

Schwartz S. D., Hubschman J. P., Heilwell G., Franco-Cardenas V., Pan C. K., Ostrick R. M., et al. (2012). Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379 713–720 10.1016/S0140-6736(12)60028-2 PubMed DOI

Sheik Mohamed J., Gaughwin P. M., Lim B., Robson P., Lipovich L. (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16 324–337 10.1261/rna.1441510 PubMed DOI PMC

Subramanyam D., Lamouille S., Judson R. L., Liu J. Y., Bucay N., Derynck R., et al. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29 443–448 10.1038/nbt.1862 PubMed DOI PMC

Suh M. R., Lee Y., Kim J. Y., Kim S. K., Moon S. H., Lee J. Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270 488–498 10.1016/j.ydbio.2004.02.019 PubMed DOI

Sun N., Yazawa M., Liu J., Han L., Sanchez-Freire V., Abilez O. J., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4 130ra147 10.1126/scitranslmed.3003552 PubMed DOI PMC

Tachibana M., Amato P., Sparman M., Gutierrez N. M., Tippner-Hedges R., Ma H., et al. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153 1228–1238 10.1016/j.cell.2013.05.006 PubMed DOI PMC

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 861–872 10.1016/j.cell.2007.11.019 PubMed DOI

Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282 1145–1147 10.1126/science.282.5391.1145 PubMed DOI

Tubsuwan A., Abed S., Deichmann A., Kardel M. D., Bartholoma C., Cheung A., et al. (2013). Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted beta-thalassemia patient. Stem Cells 31 1785–1794 10.1002/stem.1436 PubMed DOI

Velculescu V. E., Zhang L., Vogelstein B., Kinzler K. W. (1995). Serial analysis of gene expression. Science 270 484–487 10.1126/science.270.5235.484 PubMed DOI

Wilson K. D., Venkatasubrahmanyam S., Jia F., Sun N., Butte A. J., Wu J. C. (2009). MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev. 18 749–758 10.1089/scd.2008.0247 PubMed DOI PMC

Wu J. Q., Habegger L., Noisa P., Szekely A., Qiu C., Hutchison S., et al. (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc. Natl. Acad. Sci. U.S.A. 107 5254–5259 10.1073/pnas.0914114107 PubMed DOI PMC

Xu N., Papagiannakopoulos T., Pan G., Thomson J. A., Kosik K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137 647–658 10.1016/j.cell.2009.02.038 PubMed DOI

Zeng X., Cai J., Chen J., Luo Y., You Z. B., Fotter E., et al. (2004). Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22 925–940 10.1634/stemcells.22-6-925 PubMed DOI

Zhang A., Zhou N., Huang J., Liu Q., Fukuda K., Ma D., et al. (2013). The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 23 340–350 10.1038/cr.2012.164 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...