Inflammatory profiling of Schwann cells in contact with growing axons distal to nerve injury
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24877128
PubMed Central
PMC4022316
DOI
10.1155/2014/691041
Knihovny.cz E-zdroje
- MeSH
- axony metabolismus patologie MeSH
- cytokiny metabolismus MeSH
- krysa rodu Rattus MeSH
- nervus ischiadicus zranění metabolismus patologie MeSH
- potkani Wistar MeSH
- proteiny nervové tkáně metabolismus MeSH
- Schwannovy buňky metabolismus patologie MeSH
- zánět metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- proteiny nervové tkáně MeSH
Activated Schwann cells distal to nerve injury upregulate inflammatory mediators, including cytokines. The goal of the present study was to investigate expression of proinflammatory (IL-1β, TNFα) and anti-inflammatory cytokines (IL-4, IL-10) in activated Schwann cells in relation to growing axons distal to crush injury of rat sciatic nerves. Seven days from sciatic nerve crush, transverse cryostat sections were cut 5 mm distal to lesion and incubated for double immunostaining to indicate Schwann cells (GFAP or S100b) and individual investigated cytokines or to demonstrate growing axons (GAP43). The Schwann cells of naïve sciatic nerves and those removed from sham-operated rats displayed similar weak immunoreactivity for the investigated cytokines. In contrast, increased intensity of cytokine immunofluorescence was found in Schwann cells distal to crush lesion. The cytokine-positive Schwann cells were found in close contact with growing axons detected by immunostaining for GAP43. The results of immunohistochemical analysis distal to nerve crush injury suggest that inflammatory profiling of Schwann cells including upregulation of both pro- and anti-inflammatory cytokines does not prevent growth of axons distal to nerve crush injury.
Zobrazit více v PubMed
Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochimica Et Biophysica Acta-Molecular Basis of Disease. 2013;1832(7):1049–1060. PubMed PMC
Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation. 2011;8, article 110 PubMed PMC
Gensel JC, Kigerl KA, Mandrekar-Colucci SS, Gaudet AD, Popovich PG. Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell and Tissue Research. 2012;349(1):201–213. PubMed PMC
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Research Reviews. 2006;51(2):240–264. PubMed
Kerschensteiner M, Meinl E, Hohlfeld R. Neuro-immune crosstalk in CNS diseases. Neuroscience. 2009;158(3):1122–1132. PubMed
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. Journal of Neuroinflammation. 2011;8, article 109 PubMed PMC
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Annals of Anatomy. 2011;193(4):267–275. PubMed
Zigmond RE. Cytokines that promote nerve regeneration. Experimental Neurology. 2012;238(2):101–106. PubMed PMC
Taskinen HS, Olsson T, Bucht A, Khademi M, Svelander L, Röyttä M. Peripheral nerve injury induces endoneurial expression of IFN-γ, IL-10 and TNF-α mRNA. Journal of Neuroimmunology. 2000;102(1):17–25. PubMed
Shamash S, Reichert F, Rotshenker S. The cytokine network of wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β . Journal of Neuroscience. 2002;22(8):3052–3060. PubMed PMC
Üçeyler N, Tscharke A, Sommer C. Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain, Behavior, and Immunity. 2007;21(5):553–560. PubMed
Nadeau S, Filali M, Zhang J, et al. Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. Journal of Neuroscience. 2011;31(35):12533–12542. PubMed PMC
Sawada T, Sano M, Omura T, et al. Spatiotemporal quantification of tumor necrosis factor-alpha and interleukin-10 after crush injury in rat sciatic nerve utilizing immunohistochemistry. Neuroscience Letters. 2007;417(1):55–60. PubMed
Ronchi G, Nicolino S, Raimondo S, et al. Functional and morphological assessment of a standardized crush injury of the rat median nerve. Journal of Neuroscience Methods. 2009;179(1):51–57. PubMed
Mueller M, Leonhard C, Wacker K, et al. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Laboratory Investigation. 2003;83(2):175–185. PubMed
Kuhlmann T, Bitsch A, Stadelmann C, Siebert H, Brück W. Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen. Journal of Neuroscience. 2001;21(10):3401–3408. PubMed PMC
Perkins NM, Tracey DJ. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience. 2000;101(3):745–757. PubMed
McMahon SB, Cafferty WBJ, Marchand F. Immune and glial cell factors as pain mediators and modulators. Experimental Neurology. 2005;192(2):444–462. PubMed
Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–852. PubMed
Gölz G, Uhlmann L, Lüdecke D, Markgraf N, Nitsch R, Hendrix S. The cytokine/neurotrophin axis in peripheral axon outgrowth. European Journal of Neuroscience. 2006;24(10):2721–2730. PubMed
Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. Journal of Neuroimmunology. 2010;229(1-2):26–50. PubMed
Lindholm D, Heumann R, Thoenen H. Products of macrophages stimulate nerve growth-factor messenger-RNA synthesis in the injured peripheral-nerve. Journal of Neuroimmunology. 1987;16(1, article 107)
Rotshenker S, Aamar S, Barak V. Interleukin-1 activity in lesioned peripheral nerve. Journal of Neuroimmunology. 1992;39(1-2):75–80. PubMed
Boato F, Hechler D, Rosenberger K, et al. Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. Journal of Neuroinflammation. 2011;8, article 183 PubMed PMC
Temporin K, Tanaka H, Kuroda Y, et al. IL-1β promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway. Biochemical and Biophysical Research Communications. 2008;365(2):375–380. PubMed
Temporin K, Tanaka H, Kuroda Y, et al. Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neuroscience Letters. 2008;440(2):130–133. PubMed
Chen L-EN, Seaber AV, Wong GHW, Jamesr U. Tumor necrosis factor promotes motor functional recovery in crushed peripheral nerve. Neurochemistry International. 1996;29(2):197–203. PubMed
Kato K, Liu H, Kikuchi S-I, Myers RR, Shubayev VI. Immediate anti-tumor necrosis factor-α (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. Journal of Neuroscience Research. 2010;88(2):360–368. PubMed PMC
Lu G, Beuerman RW, Zhao S, et al. Tumor necrosis factor-alpha and interleukin-1 induce activation of MAP kinase and SAP kinase in human neuroma fibroblasts. Neurochemistry International. 1997;30(4-5):401–410. PubMed
Saleh A, Smith DR, Balakrishnan S, et al. Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: diminished expression in diabetes may contribute to sensory neuropathy. Brain Research. 2011;1423:87–95. PubMed
Vidal PM, Lemmens E, Dooley D, Hendrix S. The role of, “anti-inflammatory” cytokines in axon regeneration. Cytokine & Growth Factor Reviews. 2013;24(1):1–12. PubMed
Be’eri H, Reichert F, Saada A, Rotshenker S. The cytokine network of Wallerian degeneration: IL-10 and GM-CSF. European Journal of Neuroscience. 1998;10(8):2707–2713. PubMed
Early inflammatory profiling of schwannoma cells induced by lipopolysaccharide