Intracellular aspartic proteinase Apr1p of Candida albicans is required for morphological transition under nitrogen-limited conditions but not for macrophage killing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aspartátové proteasy genetika metabolismus MeSH
- Candida albicans enzymologie genetika růst a vývoj metabolismus MeSH
- dusík metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- kandidóza mikrobiologie MeSH
- lidé MeSH
- makrofágy mikrobiologie MeSH
- myši MeSH
- vakuoly enzymologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aspartátové proteasy MeSH
- dusík MeSH
- fungální proteiny MeSH
Vacuolar hydrolases have been thoroughly characterized in Saccharomyces cerevisiae, but their homologues in the fungal pathogen Candida albicans have received less attention. The genes APR1 and CPY1 of C. albicans encode putative vacuolar aspartic proteinase and serine carboxypeptidase, respectively. We examined properties of apr1Δ and cpy1Δ mutants, showing that Cpy1p molecular species detected in cell lysates of apr1Δ and its parental strain did not differ in molar mass. Processing of Cpy1p precursor is apparently independent of Apr1p. This is in contrast to S. cerevisiae, where vacuolar aspartic proteinase Pep4p is known to participate in the activation of other vacuolar hydrolases including serine carboxypeptidase. We also found that both apr1Δ and cpy1Δ strains are able to form hyphae in nutrient-rich filamentation media. However, proline as a sole nitrogen source induced filamentation only in cpy1Δ and its parental strain, but not in apr1Δ. This indicates the importance of Apr1p for the morphological transition under nitrogen-limited conditions. Despite that, the ability of apr1Δ to kill murine macrophages was not reduced under the conditions tested.
Zobrazit více v PubMed
Sabouraudia. 1975 Jul;13(2):148-53 PubMed
FEBS Lett. 1991 Nov 18;293(1-2):62-6 PubMed
Mol Microbiol. 2008 Jul;69(1):201-17 PubMed
Mol Microbiol. 2005 Apr;56(2):397-415 PubMed
Commun Integr Biol. 2011 Mar;4(2):240-2 PubMed
Eukaryot Cell. 2004 Oct;3(5):1076-87 PubMed
Science. 1994 Dec 9;266(5191):1723-6 PubMed
J Cell Biol. 1989 Feb;108(2):309-25 PubMed
Eur J Biochem. 1994 Feb 15;220(1):19-27 PubMed
J Gen Microbiol. 1982 Sep;128(9):2195-8 PubMed
J Bacteriol. 1999 Mar;181(6):1868-74 PubMed
FEMS Yeast Res. 2007 Sep;7(6):973-85 PubMed
Clin Microbiol Rev. 2007 Jan;20(1):133-63 PubMed
Curr Protoc Immunol. 2006 Dec;Chapter 8:Unit 8.4 PubMed
Eukaryot Cell. 2005 Oct;4(10):1677-86 PubMed
Proc Natl Acad Sci U S A. 1981 Jan;78(1):435-9 PubMed
Yeast. 1996 Jan;12(1):1-16 PubMed
Yeast. 2007 Jun;24(6):467-80 PubMed
Microbiology (Reading). 2007 Jan;153(Pt 1):51-8 PubMed
Eur J Biochem. 1995 Jul 1;231(1):115-25 PubMed
Eur J Biochem. 1992 Jul 1;207(1):277-83 PubMed
FEMS Yeast Res. 2008 Dec;8(8):1339-48 PubMed
Eukaryot Cell. 2003 Jun;2(3):411-21 PubMed
Eukaryot Cell. 2005 Feb;4(2):298-309 PubMed
Sabouraudia. 1984;22(2):137-44 PubMed
Can J Microbiol. 2012 May;58(5):678-81 PubMed
Yeast. 2000 Mar 15;16(4):325-7 PubMed
J Biol Chem. 1991 May 5;266(13):7963-6 PubMed
J Cell Biol. 1992 Oct;119(2):287-99 PubMed