• This record comes from PubMed

Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans

. 2014 Nov ; 59 (6) : 507-14. [epub] 20140620

Language English Country United States Media print-electronic

Document type Journal Article

Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53% of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62% of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.

See more in PubMed

Microb Ecol. 2007 Oct;54(3):424-38 PubMed

Mol Gen Genet. 1991 Aug;228(1-2):55-61 PubMed

Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61 PubMed

J Appl Microbiol. 2007 Oct;103(4):1251-61 PubMed

Biotechnol Biofuels. 2013 Aug 03;6(1):112 PubMed

J Bacteriol. 1990 Aug;172(8):4247-54 PubMed

Appl Environ Microbiol. 1987 Dec;53(12):2849-53 PubMed

Appl Environ Microbiol. 1999 Aug;65(8):3660-7 PubMed

Folia Microbiol (Praha). 2006;51(4):263-7 PubMed

Appl Environ Microbiol. 1995 Aug;61(8):2958-64 PubMed

Appl Environ Microbiol. 1985 Jul;50(1):144-51 PubMed

Appl Environ Microbiol. 1995 Dec;61(12):4396-402 PubMed

PLoS One. 2011 Feb 03;6(2):e16731 PubMed

Appl Microbiol. 1967 Sep;15(5):987-93 PubMed

Appl Environ Microbiol. 2011 Aug;77(15):5157-69 PubMed

Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2041-5 PubMed

Anaerobe. 1997 Dec;3(6):373-81 PubMed

Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):201-209 PubMed

J Biotechnol. 1997 Sep 16;57(1-3):151-66 PubMed

Folia Microbiol (Praha). 2001;46(1):94-6 PubMed

PLoS One. 2009 Aug 14;4(8):e6650 PubMed

Biochem J. 1991 Dec 1;280 ( Pt 2):309-16 PubMed

PLoS One. 2010 Aug 03;5(8):e11942 PubMed

Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 PubMed

BMC Bioinformatics. 2006 Oct 10;7:439 PubMed

Syst Biol. 2003 Oct;52(5):696-704 PubMed

Ann N Y Acad Sci. 2008 Mar;1125:280-8 PubMed

Folia Microbiol (Praha). 2013 Sep;58(5):367-73 PubMed

Appl Microbiol. 1966 Sep;14(5):794-801 PubMed

J Bacteriol. 2011 Oct;193(19):5574-5 PubMed

Biochem J. 1993 Nov 15;296 ( Pt 1):235-43 PubMed

Folia Microbiol (Praha). 2006;51(4):294-8 PubMed

Lett Appl Microbiol. 1996 Oct;23(4):218-22 PubMed

Appl Environ Microbiol. 1995 Aug;61(8):3042-50 PubMed

Syst Biol. 2006 Aug;55(4):539-52 PubMed

Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 PubMed

J Biol Chem. 1951 Nov;193(1):265-75 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...