Identification of GH10 xylanases in strains 2 and Mz5 of Pseudobutyrivibrio xylanivorans
Language English Country United States Media print-electronic
Document type Journal Article
- MeSH
- Rumen microbiology MeSH
- Bacteria classification enzymology genetics isolation & purification MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Endo-1,4-beta Xylanases chemistry genetics metabolism MeSH
- Phylogeny MeSH
- Kinetics MeSH
- Goats MeSH
- Xylans metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Endo-1,4-beta Xylanases MeSH
- Xylans MeSH
Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53% of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62% of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.
See more in PubMed
Microb Ecol. 2007 Oct;54(3):424-38 PubMed
Mol Gen Genet. 1991 Aug;228(1-2):55-61 PubMed
Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61 PubMed
J Appl Microbiol. 2007 Oct;103(4):1251-61 PubMed
Biotechnol Biofuels. 2013 Aug 03;6(1):112 PubMed
J Bacteriol. 1990 Aug;172(8):4247-54 PubMed
Appl Environ Microbiol. 1987 Dec;53(12):2849-53 PubMed
Appl Environ Microbiol. 1999 Aug;65(8):3660-7 PubMed
Folia Microbiol (Praha). 2006;51(4):263-7 PubMed
Appl Environ Microbiol. 1995 Aug;61(8):2958-64 PubMed
Appl Environ Microbiol. 1985 Jul;50(1):144-51 PubMed
Appl Environ Microbiol. 1995 Dec;61(12):4396-402 PubMed
PLoS One. 2011 Feb 03;6(2):e16731 PubMed
Appl Microbiol. 1967 Sep;15(5):987-93 PubMed
Appl Environ Microbiol. 2011 Aug;77(15):5157-69 PubMed
Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2041-5 PubMed
Anaerobe. 1997 Dec;3(6):373-81 PubMed
Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):201-209 PubMed
J Biotechnol. 1997 Sep 16;57(1-3):151-66 PubMed
Folia Microbiol (Praha). 2001;46(1):94-6 PubMed
PLoS One. 2009 Aug 14;4(8):e6650 PubMed
Biochem J. 1991 Dec 1;280 ( Pt 2):309-16 PubMed
PLoS One. 2010 Aug 03;5(8):e11942 PubMed
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 PubMed
BMC Bioinformatics. 2006 Oct 10;7:439 PubMed
Syst Biol. 2003 Oct;52(5):696-704 PubMed
Ann N Y Acad Sci. 2008 Mar;1125:280-8 PubMed
Folia Microbiol (Praha). 2013 Sep;58(5):367-73 PubMed
Appl Microbiol. 1966 Sep;14(5):794-801 PubMed
J Bacteriol. 2011 Oct;193(19):5574-5 PubMed
Biochem J. 1993 Nov 15;296 ( Pt 1):235-43 PubMed
Folia Microbiol (Praha). 2006;51(4):294-8 PubMed
Lett Appl Microbiol. 1996 Oct;23(4):218-22 PubMed
Appl Environ Microbiol. 1995 Aug;61(8):3042-50 PubMed
Syst Biol. 2006 Aug;55(4):539-52 PubMed
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 PubMed
J Biol Chem. 1951 Nov;193(1):265-75 PubMed