Reservoirs of listeria species in three environmental ecosystems

. 2014 Sep ; 80 (18) : 5583-92. [epub] 20140707

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25002422

Soil and water are suggested to represent pivotal niches for the transmission of Listeria monocytogenes to plant material, animals, and the food chain. In the present study, 467 soil and 68 water samples were collected in 12 distinct geological and ecological sites in Austria from 2007 to 2009. Listeria was present in 30% and 26% of the investigated soil and water samples, respectively. Generally, the most dominant species in soil and water samples were Listeria seeligeri, L. innocua, and L. ivanovii. The human- and animal-pathogenic L. monocytogenes was isolated exclusively from 6% soil samples in regions A (mountainous region) and B (meadow). Distinct ecological preferences were observed for L. seeligeri and L. ivanovii, which were more often isolated from wildlife reserve region C (Lake Neusiedl) and from sites in proximity to wild and domestic ruminants (region A). The higher L. monocytogenes detection and antibiotic resistance rates in regions A and B could be explained by the proximity to agricultural land and urban environment. L. monocytogenes multilocus sequence typing corroborated this evidence since sequence type 37 (ST37), ST91, ST101, and ST517 were repeatedly isolated from regions A and B over several months. A higher L. monocytogenes detection and strain variability was observed during flooding of the river Schwarza (region A) and Danube (region B) in September 2007, indicating dispersion via watercourses.

Zobrazit více v PubMed

Hawker J, Norman B, Blair I, Reintjes R, Weinberg J, Ekdahl K. (ed). 2012. Communicable disease control and health protection handbook, 3rd ed, section 3.46 John Wiley & Sons, Hoboken, NJ

Weis J, Seeliger HPR. 1975. Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 30:29–32 PubMed PMC

Bertsch D, Rau J, Eugster MR, Haug MC, Lawson PA, Lacroix C, Meile L. 2012. Listeria fleischmannii sp. nov., isolated from cheese. 63:526–532 Int. J. Syst. Evol. Microbiol. 10.1099/ijs.0.036947-0 PubMed DOI

den Bakker HC, Manuel CS, Fortes ED, Wiedmann M, Nightingale KK. 2013. Genome sequencing identifies Listeria fleischmannii subsp. coloradensis subsp. nov., a novel Listeria fleischmannii subspecies isolated from a ranch in Colorado. Int. J. Syst. Evol. Microbiol. 63:3257–3268. 10.1099/ijs.0.048587-0 PubMed DOI

den Bakker HC, Warchocki S, Wright EM, Allred AF, Ahlstrom C, Manuel CS, Stasiewicz MJ, Burrell A, Roof S, Strawn L, Fortes ED, Nightingale KK, Kephart D, Wiedmann M. 5 March 2014. Five new species of Listeria (L. floridensis sp. nov., L. aquatica sp. nov., L. cornellensis sp. nov., L. riparia sp. nov., and L. grandensis sp. nov.) from agricultural and natural environments in the United States. Int. J. Syst. Evol. 10.1099/ijs.0.052720-0 PubMed DOI

Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, Den Bakker HC. 2010. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int. J. Syst. Evol. Microbiol. 60:1280–1288. 10.1099/ijs.0.014118-0 PubMed DOI

Lang Halter E, Neuhaus K, Scherer S. 2012. Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca of a German fresh water pond. Int. J. Syst. Evol. Microbiol. 63:641–647. 10.1099/ijs.0.036830-0 PubMed DOI

Leclercq A, Clermont D, Bizet C, Grimont PA, Le Fleche-Mateos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M, Allerberger F. 2010. Listeria rocourtiae sp. nov. Int. J. Syst. Evol. Microbiol. 60:2210–2214. 10.1099/ijs.0.017376-0 PubMed DOI

Gouin E, Mengaud J, Cossart P. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 62:3550–3553 PubMed PMC

Portnoy DA, Chakraborty T, Goebel W, Cossart P. 1992. Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60:1263–1267 PubMed PMC

González-Zorn B, Domínguez-Bernal G, Suárez M, Ripio M, Vega Y, Novella S, Vázquez-Boland J. 1999. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol. Microbiol. 33:510–523. 10.1046/j.1365-2958.1999.01486.x PubMed DOI

Allerberger F, Wagner M. 2010. Listeriosis: a resurgent foodborne infection. Clin. Microbiol. Infect. 16:16–23. 10.1111/j.1469-0691.2009.03109.x PubMed DOI

Todd ECD, Notermans S. 2011. Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control 22:1484–1490. 10.1016/j.foodcont.2010.07.021 DOI

Boerlin P, Piffaretti J. 1991. Typing of human, animal, food, and environmental isolates of Listeria monocytogenes by multilocus enzyme electrophoresis. Appl. Environ. Microbiol. 57:1624–1629 PubMed PMC

Gelbícová T, Karpíšková R. 2012. Outdoor environment as a source of Listeria monocytogenes in food chain. Czech J. Food Sci. 30:83–88 http://www.agriculturejournals.cz/publicFiles/56595.pdf

Holch A, Webb K, Lukjancenko O, Ussery D, Rosenthal BM, Gram L. 2013. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl. Environ. Microbiol. 79:2944–2951. 10.1128/AEM.03715-12 PubMed DOI PMC

Malley TJ, Stasiewicz MJ, Grohn YT, Roof S, Warchocki S, Nightingale K, Wiedmann M. 2013. Implementation of statistical tools to support identification and management of persistent Listeria monocytogenes contamination in smoked fish processing plants. J. Food Prot. 76:796–811. 10.4315/0362-028X.JFP-12-236 PubMed DOI

Stessl B, Fricker M, Fox E, Karpiskova R, Demnerova K, Jordan K, Ehling-Schulz M, Wagner M. 2014. Collaborative survey on the colonization of different types of cheese-processing facilities with Listeria monocytogenes. Foodborne Pathog. Dis. 11:8–14. 10.1089/fpd.2013.1578 PubMed DOI

Haase JK, Didelot X, Lecuit M, Korkeala H, Achtman M. 2014. The ubiquitous nature of Listeria monocytogenes clones: a large-scale multilocus sequence typing study. Environ. Microbiol. 16:405–416. 10.1111/1462-2920.12342 PubMed DOI

Knabel SJ, Reimer A, Verghese B, Lok M, Ziegler J, Farber J, Pagotto F, Graham M, Nadon CA, Gilmour MW. 2012. Sequence typing confirms that a predominant Listeria monocytogenes clone caused human listeriosis cases and outbreaks in Canada from 1988 to 2010. J. Clin. Microbiol. 50:1748–1751. 10.1128/JCM.06185-11 PubMed DOI PMC

Lomonaco S, Verghese B, Gerner-Smidt P, Tarr C, Gladney L, Joseph L, Katz L, Turnsek M, Frace M, Chen Y. 2013. Novel epidemic clones of Listeria monocytogenes, United States, 2011. Emerg. Infect. Dis. 19:147–150. 10.3201/eid1901.121167 PubMed DOI PMC

Welshimer H, Donker-Voet J. 1971. Listeria monocytogenes in nature. Appl. Microbiol. 21:516–519 PubMed PMC

Vivant A, Garmyn D, Piveteau P. 2013. Listeria monocytogenes, a down-to-earth pathogen. Front. Cell. Infect. Microbiol. 3:87. 10.3389/fcimb.2013.00087 PubMed DOI PMC

Dowe MJ, Jackson ED, Mori JG, Bell CR. 1997. Listeria monocytogenes survival in soil and incidence in agricultural soils. J. Food Prot. 60:1201–1207 PubMed

Sauders BD, Overdevest J, Fortes E, Windham K, Schukken Y, Lembo A, Wiedmann M. 2012. Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol. 78:4420–4433. 10.1128/AEM.00282-12 PubMed DOI PMC

Chapin T, Masiello S, Wiedmann M, Bergholz P, Strawn L. 2013. The spatio-temporal distribution and geographical predictors of Listeria species in natural areas and the produce pre-harvest environment of New York State, paper 4563. Int. Assoc. Food Prot. 2013 Annu. Meet., 28 to 31 July 2013 https://iafp.confex.com/iafp/2013/webprogram/Paper4563.html

Kovacevic J, Sagert J, Wozniak A, Gilmour MW, Allen KJ. 2013. Antimicrobial resistance and co-selection phenomenon in Listeria spp. recovered from food and food production environments. Food Microbiol. 34:319–327. 10.1016/j.fm.2013.01.002 PubMed DOI

Locatelli A, Spor A, Jolivet C, Piveteau P, Hartmann A. 2013. Biotic and abiotic soil properties influence survival of Listeria monocytogenes in soil. PLoS One 8:e75969. 10.1371/journal.pone.0075969 PubMed DOI PMC

Lyautey E, Lapen DR, Wilkes G, McCleary K, Pagotto F, Tyler K, Hartmann A, Piveteau P, Rieu A, Robertson WJ. 2007. Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. Appl. Environ. Microbiol. 73:5401–5410. 10.1128/AEM.00354-07 PubMed DOI PMC

Wiedmann M. 2002. Molecular subtyping methods for Listeria monocytogenes. J. AOAC Int. 85:524–531 PubMed

McLaughlin HP, Casey PG, Cotter J, Gahan CG, Hill C. 2011. Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples. Arch. Microbiol. 193:775–785. 10.1007/s00203-011-0716-7 PubMed DOI

Walsh PS, Metzger DA, Higushi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513 PubMed

Border P, Howard J, Plastow G, Siggens K. 1990. Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction. Lett. Appl. Microbiol. 11:158–162. 10.1111/j.1472-765X.1990.tb00149.x PubMed DOI

Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W, Wagner M. 1999. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl. Environ. Microbiol. 65:4688–4692 PubMed PMC

Clinical and Laboratory Standards Institute. 2010. M45-A Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Approved guideline Clinical and Laboratory Standards Institute, Wayne, PA PubMed

Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. 2004. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 42:3819–3822. 10.1128/JCM.42.8.3819-3822.2004 PubMed DOI PMC

Leclercq A, Chenal-Francisque V, Dieye H, Cantinelli T, Drali R, Brisse S, Lecuit M. 2011. Characterization of the novel Listeria monocytogenes PCR serogrouping profile IVb-v1. Int. J. Food Microbiol. 147:74–77. 10.1016/j.ijfoodmicro.2011.03.010 PubMed DOI

Rousseaux S, Olier M, Lemaitre JP, Piveteau P, Guzzo J. 2004. Use of PCR-restriction fragment length polymorphism of inlA for rapid screening of Listeria monocytogenes strains deficient in the ability to invade Caco-2 cells. Appl. Environ. Microbiol. 70:2180–2185. 10.1128/AEM.70.4.2180-2185.2004 PubMed DOI PMC

Ryan S, Begley M, Hill C, Gahan CG. 2010. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions. J. Appl. Microbiol. 109:984–995. 10.1111/j.1365-2672.2010.04726.x PubMed DOI

Jaradat Z, Schutze G, Bhunia A. 2002. Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int. J. Food Microbiol. 76:1–10. 10.1016/S0168-1605(02)00050-8 PubMed DOI

Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4:e1000146. 10.1371/journal.ppat.1000146 PubMed DOI PMC

Kahle D, Wickham H. 2013. ggmap: a package for spatial visualization with Google Maps and OpenStreetMap, version 2.3. http://cran.r-project.org/web/packages/ggmap/index.html

Core Team R. 2013. R: a language and environment for statistical computing, version 3.0.2. R Foundation for Statistical Computing, Vienna, Austria: http://www.R-project.org/

Ivanek R, Groehn YT, Wells MT, Lembo AJ, Jr, Sauders BD, Wiedmann M. 2009. Modeling of spatially referenced environmental and meteorological factors influencing the probability of Listeria species isolation from natural environments. Appl. Environ. Microbiol. 75:5893–5909. 10.1128/AEM.02757-08 PubMed DOI PMC

Locatelli A, Depret G, Jolivet C, Henry S, Dequiedt S, Piveteau P, Hartmann A. 2013. Nation-wide study of the occurrence of Listeria monocytogenes in French soils using culture-based and molecular detection methods. J. Microbiol. Methods 93:242–250. 10.1016/j.mimet.2013.03.017 PubMed DOI

Cooley MB, Quiñones B, Oryang D, Mandrell RE, Gorski L. 2014. Prevalence of Shiga toxin producing Escherichia coli, Salmonella enterica and Listeria monocytogenes at public access watershed sites in a California central coast agricultural region. Front. Cell. Infect. Microbiol. 4:30. 10.3389/fcimb.2014.00030 PubMed DOI PMC

Strawn LK, Grohn YT, Warchocki S, Worobo RW, Bihn EA, Wiedmann M. 2013. Risk factors associated with Salmonella and Listeria monocytogenes contamination of produce fields. Appl. Environ. Microbiol. 79:7618–7627. 10.1128/AEM.02831-13 PubMed DOI PMC

MacGowan AP, Bowker K, McLauchlin J, Bennett PM, Reeves DS. 1994. The occurrence and seasonal changes in the isolation of Listeria spp. in shop bought food stuffs, human faeces, sewage and soil from urban sources. Int. J. Food Microbiol. 21:325–334. 10.1016/0168-1605(94)90062-0 PubMed DOI

Reischer G, Kollanur D, Vierheilig J, Wehrspaun C, Mach R, Sommer R, Stadler H, Farnleitner A. 2011. Hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environ. Sci. Technol. 45:4038–4045. 10.1021/es103659s PubMed DOI PMC

Orsi RH, den Bakker HC, Wiedmann M. 2011. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 301:79–96. 10.1016/j.ijmm.2010.05.002 PubMed DOI

den Bakker HC, Didelot X, Fortes ED, Nightingale KK, Wiedmann M. 2008. Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evol. Biol. 8:277. 10.1186/1471-2148-8-277 PubMed DOI PMC

Meloni D, Mazza R, Piras F, Lamon S, Consolati SG, Mureddu A, Mazzette R. 2012. The biofilm formation ability of Listeria monocytogenes isolated from meat, poultry, fish and processing plant environments is related to serotype and pathogenic profile of the strains. Vet. Sci. Dev. 2:e12

Cantinelli T, Chenal-Francisque V, Diancourt L, Frezal L, Leclercq A, Wirth T, Lecuit M, Brisse S. 2013. “Epidemic clones” of Listeria monocytogenes are widespread and ancient clonal groups. J. Clin. Microbiol. 51:3770–3779. 10.1128/JCM.01874-13 PubMed DOI PMC

Conter M, Paludi D, Zanardi E, Ghidini S, Vergara A, Ianieri A. 2009. Characterization of antimicrobial resistance of foodborne Listeria monocytogenes. Int. J. Food Microbiol. 128:497–500. 10.1016/j.ijfoodmicro.2008.10.018 PubMed DOI

Granier SA, Moubareck C, Colaneri C, Lemire A, Roussel S, Dao TT, Courvalin P, Brisabois A. 2011. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl. Environ. Microbiol. 77:2788–2790. 10.1128/AEM.01381-10 PubMed DOI PMC

Troxler R, Von Graevenitz A, Funke G, Wiedemann B, Stock I. 2000. Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clin. Microbiol. Infect. 6:525–535. 10.1046/j.1469-0691.2000.00168.x PubMed DOI

Chenal-Francisque V, Lopez J, Cantinelli T, Caro V, Tran C, Leclercq A, Lecuit M, Brisse S. 2011. Worldwide distribution of major clones of Listeria monocytogenes. Emerg. Infect. Dis. 17:1110. 10.3201/eid/1706.101778 PubMed DOI PMC

Li Q, Sherwood J, Logue C. 2007. Antimicrobial resistance of Listeria spp. recovered from processed bison. Lett. Appl. Microbiol. 44:86–91. 10.1111/j.1472-765X.2006.02027.x PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A European-wide dataset to uncover adaptive traits of Listeria monocytogenes to diverse ecological niches

. 2022 Apr 28 ; 9 (1) : 190. [epub] 20220428

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...