Home range, movement, and distribution patterns of the threatened dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): a thousand times greater territory to protect?
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25006671
PubMed Central
PMC4090123
DOI
10.1371/journal.pone.0100408
PII: PONE-D-13-47166
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- hustota populace MeSH
- ohrožené druhy * MeSH
- rozšíření zvířat MeSH
- vážky * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark-release-recapture method (marking 2,881 adults) and exuviae collection with the Jolly-Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape.
Zobrazit více v PubMed
Kalkman VJ, Boudot J-P, Bernard R, Conze K-J, De Knijf G, et al... (2010) European red list of Dragonflies. IUCN & Publications Office of the European Union, Luxembourg. 38 p.
Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Conserv 78: 279–288.
Oppel S (2006) Comparison of two Odonata communities from a natural and a modified rain forest in Papua New Guinea. Int J Odonatol 9: 89–102.
Dolný A, Harabiš F, Bárta D, Lhota S, Drozd P (2012) Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of East Kalimantan. Trop Zool 25: 141–157.
Kutcher TE, Bried JT (2014) Adult Odonata conservatism as an indicator of freshwater wetland condition. Ecol Indic 38: 31–39.
Oliver T, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13: 473–484. PubMed
Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, et al. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31: 79–92.
Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13: 3–27.
Corbet PS (1999) Dragonflies: behavior and ecology of odonata. Harley Books, Colchester. 829 p.
Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6: 783–796.
Harabiš F, Dolný A (2011) The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40: 17–26.
Benard MF, McCauley SJ (2008) Integrating across life-history stages: consequences of natal habitat effects on dispersal. Am Nat 171: 553–67. PubMed
Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: Routine or special movements? Basic Appl Ecol 9: 535–545.
Benton TG, Bowler DE (2012) Dispersal in invertebrates: influences on individual decisions. In: Clobert J, Baguette M, Benton T, Bullock J, eds. Dispersal ecology and evolution. Oxford University Press. pp 41–49.
Sang A, Teder T (2011) Dragonflies cause spatial and temporal heterogeneity in habitat quality for butterflies. Insect Conserv Div 4: 257–64.
Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73: 43–48.
Clark TE, Samways MJ (1996) Dragonflies (Odonata) as indicators of biotope quality in the Kruger National Park, South Africa. J Appl Ecol 33: 1001–1012.
Hassall C, Hollinshead J, Hull A (2011) Environmental correlates of plant and invertebrate species richness in ponds. Biodivers Conserv 20: 3189–3222.
Remsburg AJ, Turner MG (2009) Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J North Am Benthol Soc 28: 44–56.
Purse BV, Hopkins GW, Day KJ, Thompson DJ (2003) Dispersal characteristics and management of a rare damselfly. J Appl Ecol 40: 716–728.
Harabiš F, Tichanek F, Tropek R (2013) Dragonflies of freshwater pools in lignite spoil heaps: Restoration management, habitat structure and conservation value. Ecol Eng 55: 51–61.
Dolný A, Mižičová H, Harabiš F (2013) Natal philopatry in four European species of dragonflies (Odonata: Sympetrinae) and possible implications for or conservation management. J Insect Conserv 17: 821–829.
Dijkstra K-DB, Lewington R (2006) Field guide to the dragonflies of Britain and Europe including western Turkey and north-western Africa. British Wildlife Publishing, Milton on Stour. 320p.
Sternberg K, Buchwald R (2000) Die Libellen Baden-Württembergs. Band 2: Groβlibellen (Anisoptera). Verlag Eugen Ulmer Gmbh & Co, Stuttgart. 712 p.
Sahlén G, Bernard R, Cordero Rivera A, Ketelaar R, Suhling F (2004) Critical species of Odonata in Europe. Int J Odonatol 7: 385–398.
Raebel EM, Merckx T, Riordan P, Macdonald DW, Thompson DJ (2010) The dragonfly delusion: why it is essential to sample exuviae to avoid biased surveys. J Insect Conserv 14: 523–533.
Gerken B, Sternberg K (1999) Die Exuvien europäischer Libellen (Insecta, Odonata)/The exuviae of European dragonflies. Höxter: Huxaria Druckerei GmbH. 354 p.
Cooch E, White G (2012) Program MARK: Analysis of data from marked individuals, “a gentle introduction” (11th ed.). Available from: http://www.cnr.colostate.edu/*gwhite/mark/mark.html. Accessed 28 August 2013.
White GC, Burnham KP (1999) Program MARK: Survival estimation from populations of marked animals. Bird Stud 46: 120–138.
Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: case studies and recent advances. Ecol Monogr 62: 67–118.
Burnham KP, Anderson DR (2004) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer. 488 p.
Konvicka M, Novak J, Benes J, Fric Z, Bradley J, et al. (2008) The last population of the Woodland Brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management. J Insect Conserv 12: 549–560.
Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power law functions are invariant to marking frequency. Basic Appl Ecol 8: 377–386.
Calcagno V, de Mazancourt C (2010) glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models. Journal of Statistical Software 34: 1–29.
Crawley MJ (2007) The R Book. New York: Wiley, 950 p.
Bretz F, Hothorn T, Westfall P (2010) Multiple Comparisons Using R, Boca Raton: CRC Press, 205 p.
R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria : the R Foundation for Statistical Computing.
Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17: 831–850.
Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar A, ed. Dragonflies & damselflies: model organisms for ecological and evolutionary research. Oxford: Oxford University Press. pp 79–95.
Davidowitz G, Rosenzweig ML (1998) The latitudinal gradient of species diversity among North American grasshoppers within a single habitat: a test of the spatial heterogeneity hypothesis. J Biogeogr 25: 553–560.
Flick T, Feagan S, Fahrig L (2012) Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agr Ecosyst Environ 156: 123–133.
Foote AL, Hornung CLR (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecol Entomol 30: 273–283.
Hamasaki K, Yamanaka T, Tanaka K, Nakatani Y, Iwasaki N, et al. (2009) Relative importance of within-habitat environment, land use and spatial autocorrelations for determining odonate assemblages in rural reservoir ponds in Japan. Ecol Res 24: 597–605.
Jonsen ID, Taylor PD (2000) Fine-scale movement behaviors of Calopterygid damselflies are influenced by landscape structure: An experimental manipulation. Oikos 88: 553–562.
Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005) Trophic cascades across ecosystems. Nature 437: 880–884. PubMed
Seifert LI, Scheu S (2012) Linking aquatic and terrestrial food webs – Odonata in boreal systems. Freshw Biol 57: 1449–1457.
Kalkman VJ, Clausnitzer V, Dijkstra KDB, Orr AG, Paulson D, et al. (2008) Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia 595: 351–363.
McCauley SJ (2010) Body size and social dominance influence breeding dispersal in male Pachydiplax longipennis (Odonata). Ecol Entomol 35: 377–385.
Suhonen J, Hilli-Lukkarinen M, Korkeamäki E, Kuitunen M, Kullas J, et al. (2010) Local extinction of dragonfly and damselfly populations in low- and high-quality habitat patches. Conserv Biol 24: 1148–1153. PubMed
Alcock J (2009) Animal Behavior. 9th ed. Sunderland: Sinauer Associates. 546 p.
Koenig WD (1990) Territory size and duration in the white-tailed skimmer Plathemis lydia (Odonata: Libellulidae). J Anim Ecol 59: 317–333.
Michiels NK, Dhondt AA (1991) Characteristics of dispersal in sexually mature dragonflies. Ecol Entomol 16: 449–459.
Darden SK, Croft DP (2008) Male harassment drives females to alter habitat use and leads to segregation of the sexes. Biol Lett 4: 449–451. PubMed PMC
Sirot LK, Brockmann HJ (2001) Costs of sexual interactions to females in Rambur's forktail damselfly, Ischnura ramburi (Zygoptera: Coenagrionidae). Anim Behav 61: 415–424.
Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57: 249–265. PubMed
Koch K (2006) Effects of male harassment on females oviposition behaviour in libellulids (Odonata). Int J Odonatol 9: 71–80.
Anholt BR, Vorburger C, Knaus P (2001) Mark–recapture estimates of daily survival rates of two damselflies (Coenagrion puella and Ischnura elegans). Can J Zool 79: 895–899.
New TR (2005) Invertebrate Conservation and Agricultural Ecosystems. Cambridge: Cambridge University Press. 348p.
Chaput-Bardy A, Grégoire A, Baguette M, Pagano A, Secondi J (2010) Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens. PLoS ONE 5: e10694 doi:10.1371/journal.pone.0010694 PubMed DOI PMC
Bernath B, Szedenics G, Wildermuth H, Horvath G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarisation of reflected light as a possible cue for dragonfly habitat selection. Freshw Biol 47: 1707–1719.
Wildermuth H (1994) Habitatselektion bei Libellen. Adv Odonatol 6: 223–257.