In vitro interactions between 17β-estradiol and DNA result in formation of the hormone-DNA complexes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25089777
PubMed Central
PMC4143829
DOI
10.3390/ijerph110807725
PII: ijerph110807725
Knihovny.cz E-zdroje
- MeSH
- DNA metabolismus MeSH
- estradiol metabolismus MeSH
- lidé MeSH
- spektrofotometrie ultrafialová MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- estradiol MeSH
Beyond the role of 17β-estradiol (E2) in reproduction and during the menstrual cycle, it has been shown to modulate numerous physiological processes such as cell proliferation, apoptosis, inflammation and ion transport in many tissues. The pathways in which estrogens affect an organism have been partially described, although many questions still exist regarding estrogens' interaction with biomacromolecules. Hence, the present study showed the interaction of four oligonucleotides (17, 20, 24 and/or 38-mer) with E2. The strength of these interactions was evaluated using optical methods, showing that the interaction is influenced by three major factors, namely: oligonucleotide length, E2 concentration and interaction time. In addition, the denaturation phenomenon of DNA revealed that the binding of E2 leads to destabilization of hydrogen bonds between the nitrogenous bases of DNA strands resulting in a decrease of their melting temperatures (Tm). To obtain a more detailed insight into these interactions, MALDI-TOF mass spectrometry was employed. This study revealed that E2 with DNA forms non-covalent physical complexes, observed as the mass shifts for app. 270 Da (Mr of E2) to higher molecular masses. Taken together, our results indicate that E2 can affect biomacromolecules, as circulating oligonucleotides, which can trigger mutations, leading to various unwanted effects.
Zobrazit více v PubMed
Benotti M.J., Trenholm R.A., Vanderford B.J., Holady J.C., Stanford B.D., Snyder S.A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 2009;43:597–603. doi: 10.1021/es801845a. PubMed DOI
Boyd G.R., Reemtsma H., Grimm D.A., Mitra S. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci. Total Environ. 2003;311:135–149. doi: 10.1016/S0048-9697(03)00138-4. PubMed DOI
Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., Buxton H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002;36:1202–1211. doi: 10.1021/es011055j. PubMed DOI
Jiang W.W., Yan Y., Ma M., Wang D.H., Luo Q., Wang Z.J., Satyanarayanan S.K. Assessment of source water contamination by estrogenic disrupting compounds in China. J. Environ. Sci. 2012;24:320–328. doi: 10.1016/S1001-0742(11)60746-8. PubMed DOI
Snyder E.M., Snyder S.A., Kelly K.L., Gross T.S., Villeneuve D.L., Fitzgerald S.D., Villalobos S.A., Giesy J.P. Reproductive responses of common carp (Cyprinus carpio) exposed in cages to influent of the Las Vegas Wash in Lake Mead, Nevada, from late winter to early spring. Environ. Sci. Technol. 2004;38:6385–6395. doi: 10.1021/es049690n. PubMed DOI
Isobe T., Serizawa S., Horiguchi T., Shibata Y., Managaki S., Takada H., Morita M., Shiraishi H. Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay. Environ. Pollut. 2006;144:632–638. doi: 10.1016/j.envpol.2006.01.030. PubMed DOI
David A., Fenet H., Gomez E. Alkylphenols in marine environments: Distribution monitoring strategies and detection considerations. Mar. Pollut. Bull. 2009;58:953–960. doi: 10.1016/j.marpolbul.2009.04.021. PubMed DOI
Boulay F., Perdiz D. 17β-Estradiol modulates UVB-induced cellular responses in estrogen receptors positive human breast cancer cells. J. Photochem. Photobiol. B Biol. 2005;81:143–153. doi: 10.1016/j.jphotobiol.2005.05.008. PubMed DOI
Yan Z.H., Lu G.H., Wu D.H., Ye Q.X., Xie Z.X. Interaction of 17 beta-estradiol and ketoconazole on endocrine function in goldfish (Carassius auratus) Aquat. Toxicol. 2013;132:19–25. PubMed
Heldring N., Pike A., Andersson S., Matthews J., Cheng G., Hartman J., Tujague M., Strom A., Treuter E., Warner M., et al. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev. 2007;87:905–931. doi: 10.1152/physrev.00026.2006. PubMed DOI
Lee H.R., Jeung E.B., Cho M.H., Kim T.H., Leung P.C.K., Choi K.C. Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J. Cell. Mol. Med. 2013;17:1–11. doi: 10.1111/j.1582-4934.2012.01649.x. PubMed DOI PMC
Tang X.J., Naveedullah, Hashmi M.Z., Zhang H., Qian M.R., Yu C.N., Shen C.F., Qin Z.H., Huang R.L., Qiao J.N., et al. A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater. Bull. Environ. Contam. Toxicol. 2013;90:391–396. doi: 10.1007/s00128-012-0912-4. PubMed DOI
Macon M.B., Fenton S.E. Endocrine disruptors and the breast: Early life effects and later life disease. J. Mammary Gland Biol. Neoplasia. 2013;18:43–61. doi: 10.1007/s10911-013-9275-7. PubMed DOI PMC
Jenkins S., Betancourt A.M., Wang J., Lamartiniere C.A. Endocrine-active chemicals in mammary cancer causation and prevention. J. Steroid Biochem. Mol. Biol. 2012;129:191–200. doi: 10.1016/j.jsbmb.2011.06.003. PubMed DOI
Ombra M.N., di Santi A., Abbondanza C., Migliaccio A., Avvedimento E.V., Perillo B. Retinoic acid impairs estrogen signaling in breast cancer cells by interfering with activation of LSD1 via PKA. Biochim. Biophys. Acta. 2013;1829:480–486. doi: 10.1016/j.bbagrm.2013.03.003. PubMed DOI
Lacroix M., Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 2004;83:249–289. doi: 10.1023/B:BREA.0000014042.54925.cc. PubMed DOI
Resende F.A., de Oliveira A.P.S., de Camargo M.S., Vilegas W., Varanda E.A. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PLoS One. 2013;8 doi: 10.1371/journal.pone.0074881. PubMed DOI PMC
Cavalieri E.L., Rogan E.G. Depurinating estrogen-DNA adducts in the etiology and prevention of breast and other human cancers. Future Oncol. 2010;6:75–91. doi: 10.2217/fon.09.137. PubMed DOI PMC
Cavalieri E.L., Stack D.E., Devanesan P.D., Todorovic R., Dwivedy I., Higginbotham S., Johansson S.L., Patil K.D., Gross M.L., Gooden J.K., et al. Molecular origin of cancer: Catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc. Natl. Acad. Sci. USA. 1997;94:10937–10942. doi: 10.1073/pnas.94.20.10937. PubMed DOI PMC
Abbondanza C., de Rosa C., D’Arcangelo A., Pacifico M., Spizuoco C., Piluso G., Di Zazzo E., Gazzerro P., Medici N., Moncharmont B., et al. Identification of a functional estrogen-responsive enhancer element in the promoter 2 of PRDM2 gene in breast cancer cell lines. J. Cell. Physiol. 2012;227:964–975. doi: 10.1002/jcp.22803. PubMed DOI
Hung Y.C., Chang W.C., Chen L.M., Chang Y.Y., Wu L.Y., Chung W.M., Lin T.Y., Chen L.C., Ma W.L. Non-genomic estrogen/estrogen receptor alpha promotes cellular malignancy of immature ovarian teratoma in vitro. J. Cell. Physiol. 2014;229:752–761. doi: 10.1002/jcp.24495. PubMed DOI
Cirillo F., Nassa G., Taralla R., Stellato C., De Filippo M.R., Arribrosino C., Baumann M., Nyman T.A., Weisz A. Molecular mechanisms of selective estrogen receptor modulator activity in human breast cancer cells: Identification of novel nuclear cofactors of antiestrogen-ER alpha complexes by interaction proteomics. J. Proteome Res. 2013;12:421–431. doi: 10.1021/pr300753u. PubMed DOI
Heldring N., Isaacs G.D., Diehl A.G., Sun M., Cheung E., Ranish J.A., Kraus W.L. Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol. Endocrinol. 2011;25:564–574. doi: 10.1210/me.2010-0425. PubMed DOI PMC
Acconcia F., Kumar R. Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett. 2006;238:1–14. doi: 10.1016/j.canlet.2005.06.018. PubMed DOI
McGlynn L.M., Tovey S., Bartlett J.M.S., Doughty J., Cooke T.G., Edwards J. Interactions between MAP kinase and oestrogen receptor in human breast cancer. Eur. J. Cancer. 2013;49:1176–1186. doi: 10.1016/j.ejca.2012.11.020. PubMed DOI
Heger Z., Zitka O., Krizkova S., Beklova M., Kizek R., Adam V. Molecular biology of beta-estradiol-estrogen receptor complex binding to estrogen response element and the effect on cell proliferation. Neuroendocrinol. Lett. 2013;34:123–129. PubMed
Losel R.M., Falkenstein E., Feuring M., Schultz A., Tillmann H.C., Rossol-Haseroth K., Wehling M. Nongenomic steroid action: Controversies, questions, and answers. Physiol. Rev. 2003;83:965–1016. PubMed
Suman M., Giacomello M., Corain L., Ballarin C., Montelli S., Cozzi B., Peruffo A. Estradiol effects on intracellular Ca2+ homeostasis in bovine brain-derived endothelial cells. Cell Tissue Res. 2012;350:109–118. doi: 10.1007/s00441-012-1460-2. PubMed DOI
Candelaria N.R., Liu K., Lin C.Y. Estrogen receptor alpha: Molecular mechanisms and emerging insights. J. Cell. Biochem. 2013;114:2203–2208. doi: 10.1002/jcb.24584. PubMed DOI
Imaoka T., Nishimura M., Doi K., Tani S., Ishikawa K., Yamashita S., Ushijima T., Imai T., Shimada Y. Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis. Int. J. Cancer. 2014;134:1529–1538. doi: 10.1002/ijc.28480. PubMed DOI
Wang Y.C., Lin W.L., Lin Y.J., Tang F.Y., Chen Y.M., Chiang E.P.I. A novel role of the tumor suppressor GNMT in cellular defense against DNA damage. Int. J. Cancer. 2014;134:799–810. doi: 10.1002/ijc.28420. PubMed DOI
Saeed M., Zahid M., Gunselman S.J., Rogan E., Cavalieri E. Slow loss of deoxyribose from the N7deoxygruanosine adducts of estradiol-3,4-quinone and hexestrol-3,4’-quinone. Implications for mutagenic activity. Steroids. 2005;70:29–35. doi: 10.1016/j.steroids.2004.09.011. PubMed DOI
Peng B., Chen X., Du K.J., Yu B.L., Chao H., Ji L.N. Synthesis, characterization and DNA-binding studies of ruthenium(II) mixed-ligand complexes containing dipyrido 1,2,5 oxadiazolo 3,4-b quinoxaline. Spectroc. Acta A Mol. Biomol. Spectr. 2009;74:896–901. doi: 10.1016/j.saa.2009.08.031. PubMed DOI
Syed S.N., Schulze H., Macdonald D., Crain J., Mount A.R., Bachmann T.T. Cyclic denaturation and renaturation of double-stranded DNA by redox-state switching of DNA intercalators. J. Am. Chem. Soc. 2013;135:5399–5407. doi: 10.1021/ja311873t. PubMed DOI
Vizard D.L., White R.A., Ansevin A.T. Comparison of theory to experiment for DNA thermal-denaturation. Nature. 1978;275:250–251. doi: 10.1038/275250a0. PubMed DOI
Breslauer K.J., Frank R., Blocker H., Marky L.A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA. 1986;83:3746–3750. doi: 10.1073/pnas.83.11.3746. PubMed DOI PMC
Melchior W.B., Vonhippe P.H. Alteration of relative stability of dA-dT and dG-dC base pairs in DNA. Proc. Natl. Acad. Sci. USA. 1973;70:298–302. doi: 10.1073/pnas.70.2.298. PubMed DOI PMC
Srinivasan J.R., Liu Y.H., Venta P.J., Siemieniak D., Killeen A.A., Zhu Y.D., Lubman D.M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a rapid screening method to detect mutations causing Tay-Sachs disease. Rapid Commun. Mass Spectrom. 1997;11:1144–1150. doi: 10.1002/(SICI)1097-0231(19970630)11:10<1144::AID-RCM981>3.0.CO;2-Q. PubMed DOI
Zhang L.K., Gross M.L. Matrix-assisted laser desorption/ionization mass spectrometry methods for oligodeoxynucleotides: Improvements in matrix, detection limits, quantification, and sequencing. J. Am. Soc. Mass Spectrom. 2000;11:854–865. doi: 10.1016/S1044-0305(00)00161-6. PubMed DOI
Yu F., Xu S.Y., Pan C.S., Ye M.L., Zou H.F., Guo B.C. A matrix of 3,4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res. 2006;34:1–7. doi: 10.1093/nar/gkj405. PubMed DOI PMC
Ohara K., Smietana M., Vasseur J.J. Characterization of specific noncovalent complexes between guanidinium derivatives and single-stranded DNA by MALDI. J. Am. Soc. Mass Spectrom. 2006;17:283–291. doi: 10.1016/j.jasms.2005.11.005. PubMed DOI
Tang K., Fu D.J., Kotter S., Cotter R.J., Cantor C.R., Koster H. Matrix-assisted laser desorption/ionization mass-spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 1995;23:3126–3131. doi: 10.1093/nar/23.16.3126. PubMed DOI PMC
Hop C., Bakhtiar R. An introduction to electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry: Essential tools in a modern biotechnology environment. Biospectroscopy. 1997;3:259–280. doi: 10.1002/(SICI)1520-6343(1997)3:4<259::AID-BSPY2>3.0.CO;2-#. DOI
Gilar M., Belenky A., Wang B.H. High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J. Chromatogr. A. 2001;921:3–13. doi: 10.1016/S0021-9673(01)00833-0. PubMed DOI
Chifotides H.T., Koomen J.M., Kang M.J., Tichy S.E., Dunbar K.R., Russell D.H. Binding of DNA purine sites to dirhodium compounds probed by mass spectrometry. Inorg. Chem. 2004;43:6177–6187. doi: 10.1021/ic040040u. PubMed DOI
Tsuchiya Y., Nakajima M., Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227:115–124. doi: 10.1016/j.canlet.2004.10.007. PubMed DOI
Nussinov R., Tsai C.J., Mattos C. “Pathway drug cocktail”: Targeting Ras signaling based on structural pathways. Trends Mol. Med. 2013;19:695–704. doi: 10.1016/j.molmed.2013.07.009. PubMed DOI
Farmer P.B., Sweetman G.M.A. Mass-spectrometric detection of carcinogen adducts. J. Mass Spectrom. 1995;30:1369–1379. doi: 10.1002/jms.1190301002. DOI
Saeed M., Rogan E., Cavalieri E. Mechanism of metabolic activation and DNA adduct formation by the human carcinogen diethylstilbestrol: The defining link to natural estrogens. Int. J. Cancer. 2009;124:1276–1284. doi: 10.1002/ijc.24113. PubMed DOI PMC
Hendry L.B., Roach L.W., Mahesh V.B. Multidimensional screening and design of pharmaceuticals by using endocrine pharmacophores. Steroids. 1999;64:570–575. doi: 10.1016/S0039-128X(99)00035-5. PubMed DOI
Olmsted S.L., Tongcharoensirikul P., McCaskill E., Gandiaga K., Labaree D., Hochberg R.B., Hanson R.N. Synthesis and evaluation of 17 alpha-E-20-(heteroaryl)norpregn-1,3,5(10),20 tetraene-3,17 beta-diols 17 alpha-(heteroaryl)vinyl estradiols as ligands for the estrogen receptor-alpha ligand binding domain (ER alpha-LBD) Bioorg. Med. Chem. Lett. 2012;22:977–979. doi: 10.1016/j.bmcl.2011.12.003. PubMed DOI PMC
Izzotti A., Larghero P., Longobardi M., Cartiglia C., Camoirano A., Steele V.E., de Flora S. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2011;717:9–16. doi: 10.1016/j.mrfmmm.2010.12.008. PubMed DOI