Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
R01 GM085232
NIGMS NIH HHS - United States
PubMed
25184538
PubMed Central
PMC7318797
DOI
10.1042/bj20140409
PII: BJ20140409
Knihovny.cz E-resources
- MeSH
- Cyclins chemistry genetics metabolism MeSH
- Cystathionine beta-Synthase chemistry genetics metabolism MeSH
- Protein Conformation MeSH
- Crystallization MeSH
- Humans MeSH
- Molecular Sequence Data MeSH
- Mutation genetics MeSH
- Nucleotides chemistry metabolism MeSH
- Cation Transport Proteins MeSH
- Protein Structure, Secondary MeSH
- Amino Acid Sequence MeSH
- Binding Sites physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CNNM2 protein, human MeSH Browser
- Cyclins MeSH
- Cystathionine beta-Synthase MeSH
- Nucleotides MeSH
- Cation Transport Proteins MeSH
Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine β-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.
See more in PubMed
Swaminathan R (2003) Magnesium metabolism and its disorders. Clin. Biochem. Rev 24, 47–66 PubMed PMC
Jahnen-Dechent W and Ketteler M (2012) Magnesium basics. Clin. Kidney J 5 (Suppl. 1), i3–i14 PubMed PMC
Quamme GA (2010) Molecular identification of ancient and modern mammalian magnesium transporters. Am. J. Physiol. Cell Physiol 298, C407–C429 PubMed
Günther T (1993) Mechanisms and regulation of Mg2+ efflux and Mg2+ influx. J. Miner. Electrolyte Metab 19, 259–265 PubMed
Cefaratti C, Romani A and Scarpa A (2000) Differential localization and operation of distinct Mg2+ transporters in apical and basolateral sides of rat liver plasma membrane. J. Biol. Chem 275, 3772–3780 PubMed
Romani AM and Scarpa A (2000) Regulation of cellular magnesium. Front. Biosci 5, D720–D374 PubMed
Tashiro M, Konishi M, Iwamoto T, Shigekawa M and Kurihara S (2000) Transport of magnesium by two isoforms of the Na+ -Ca2+ exchanger expressed in CCL39 fibroblasts. Pflugers Arch. 440, 819–827 PubMed
Watanabe M, Konishi M, Ohkido I and Matsufuji S (2005) Enhanced sodium-dependent extrusion of magnesium in mutant cells established from a mouse renal tubular cell line. Am. J. Physiol. Renal Physiol 289, F742–F748 PubMed
Schweigel M, Kolisek M, Nikolic Z and Kuzinski J (2008) Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells. Magnes. Res 21, 118–123 PubMed
Eshaghi S, Niegowski D, Kohl A, Martinez Molina D, Lesley SA and Nordlund P (2006) Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313, 354–357 PubMed
Sponder G, Svidova S, Schweigel M, Vormann J and Kolisek M (2010) Splice-variant 1 of the ancient domain protein 2 (ACDP2) complements the magnesium-deficient growth phenotype of Salmonella enterica sv. typhimurium strain MM281. Magnes. Res 23, 105–114 PubMed
Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC and Lenardo MJ (2011) Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 PubMed PMC
Rude RK and Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations. J. Nutr. Biochem 15, 710–716 PubMed
Ferrè S, Hoenderop JG and Bindels RJ (2011) Insight into renal Mg2+ transporters. Curr. Opin. Nephrol. Hypertens 20, 169–176 PubMed
McKusick VA (1998) Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders, 12th edn, Johns Hopkins University Press, Baltimore
Stuiver M, Lainez S, Will C, Terryn S, Günzel D, Debaix H, Sommer K, Kopplin K, Thumfart J, Kampik NB et al. (2011) CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am. J. Hum. Genet 88, 333–343 PubMed PMC
De Baaij JH, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJ and Hoenderop JG (2012) Membrane topology and intracellular processing of cyclin M2 (CNNM2). J. Biol. Chem 287, 13644–13655 PubMed PMC
Polok B, Escher P, Ambresin A, Chouery E, Bolay S, Meunier I, Nan F, Hamel C, Munier FL, Thilo B et al. (2009) Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet 84, 259–265 PubMed PMC
Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, Bloch-Zupan A, Carlos R, Carr IM, Downey LM et al. (2009) Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am. J. Hum. Genet 84, 266–273 PubMed PMC
Yamazaki D, Funato Y, Miura J, Sato S, Toyosawa S, Furutani K, Kurachi Y, Omori Y, Furukawa T, Tsuda T et al. (2013) Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 9, e1003983. PubMed PMC
Goytain A and Quamme GA (2005) Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol. Genomics 22, 382–389 PubMed
Wang CY, Shi JD, Yang P, Kumar PG, Li QZ, Run QG, Su YC, Scott HS, Kao KJ and She JX (2003) Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene 306, 37–44 PubMed
Wang CY, Yang P, Shi JD, Purohit S, Guo D, An H, Gu JG, Ling J, Dong Z and She JX (2004) Molecular cloning and characterization of the mouse Acdp gene family. BMC Genomics 5, 1–9 PubMed PMC
Gibson MM, Bagga DA, Miller CG and Maguire ME (1991) Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol. Microbiol 5, 2753–2762 PubMed
Yang M, Jensen LT, Gardner AJ and Culotta VC (2005) Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Biochem. J 386, 479–487 PubMed PMC
Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci 22, 12–13 PubMed
Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG and Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest 113, 274–284 PubMed PMC
Kemp BE (2004) Bateman modules and adenosine derivatives form a binding contract. J. Clin. Invest 113, 182–184 PubMed PMC
Shabb JB and Corbin JD (1992) Cyclic nucleotide-binding domains in proteins having diverse functions. J. Biol. Chem 267, 5723–5726 PubMed
Hattori M, Tanaka Y, Fukai S, Ishitani R and Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072–1075 PubMed
Hattori M, Iwase N, Furuya N, Tanaka Y, Tsukazaki T, Ishitani R, Maguire ME., Ito K, Maturana A and Nureki O (2009) Mg2+ -dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis. EMBO J. 28, 3602–3612 PubMed PMC
Ishitani R, Sugita Y, Dohmae N, Furuya N, Hattori M and Nureki O (2008) Mg2+ -sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Proc. Natl. Acad. Sci. U.S.A 105, 15393–15398 PubMed PMC
Guo D, Ling J, Wang MH, She JX, Gu J and Wang CY (2005) Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Mol. Pain 1, 1–11 PubMed PMC
Gómez-García I, Oyenarte I and Martínez-Cruz LA (2011) Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Acta Crystallogr. F Struct. Biol. Commun 67, 349–353 PubMed PMC
Gómez-García I, Stuiver M, Ereño J, Oyenarte I, Corral-Rodríguez MA, Müller D and Martínez-Cruz LA (2012) Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallogr. F Struct. Biol. Commun 68, 1198–1203 PubMed PMC
Marley J, Lu M and Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 PubMed
Otwinowski Z and Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 PubMed
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC and Read RJ (2007) Phaser crystallographic software. J. Appl. Crystallogr 40, 658–674 PubMed PMC
Lucas M, Encinar JA, Arribas EA, Oyenarte I, García IG, Kortazar D, Fernández JA, Mato JM, Martínez-Chantar ML and Martínez-Cruz LA (2010) Binding of S-methyl-5 -thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J. Mol. Biol 396, 800–820 PubMed
Zwart PH, Afonine PV, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, McKee E, Moriarty NW, Read RJ, Sacchettini JC et al. (2008) Automated structure solution with the PHENIX suite. Methods Mol. Biol 426, 419–435 PubMed
Vagin AA, Steiner RS, Lebedev AA, Potterton L, McNicholas S, Long F and Murshudov GN (2004) REFMAC5 dictionary: organisation of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr 60, 2284–2295 PubMed
Emsley P and Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr 60, 2126–2132 PubMed
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS and Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr 66, 12–21 PubMed PMC
Reference deleted.
Ignoul S and Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol 289, C1369–C1378 PubMed
Baykov AA, Tuominen HK and Lahti R (2011) The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem. Biol 6, 1156–1163 PubMed
Ereno-Orbea J, Oyenarte I and Martínez-Cruz LA (2013) CBS domains: ligand binding sites and conformational variability. Arch. Biochem. Biophys 540, 70–81 PubMed
Gómez-García I, Oyenarte I and Martínez-Cruz LA (2010) The crystal structure of protein MJ1225 from Methanocaldococcus jannaschii shows strong conservation of key structural features seen in the eukaryal γ -AMPK. J. Mol. Biol 399, 53–70 PubMed
Beis I and Newsholme EA (1975) The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J 152, 23–32 PubMed PMC
Sigel H (1987) Isomeric equilibria in complexes of adenosine 5 -triphosphate with divalent metal ions. Solution structures of M(ATP)2− complexes. Eur. J. Biochem 165, 65–72 PubMed
Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF and Kim SH (1998) Crystal structure of the ATP-binding subunit of ABC transporter. Nature 396, 703–707 PubMed
Wu SL, Li CC, Chen JC, Chen YJ, Lin CT, Ho TY and Hsiang CY (2009) Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity. J. Biomed. Sci 16, 6. PubMed PMC
San-Cristobal P, Dimke H, Hoenderop JG and Bindels RJ (2010) Novel molecular pathways in renal Mg2+ transport: a guided tour along the nephron. Curr. Opin. Nephrol. Hypertens 19, 456–462 PubMed
Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ and Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem 279, 19–25 PubMed
Li M, Jiang J and Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J. Gen. Physiol 127, 525–537 PubMed PMC
Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW and Yue L (2007) Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J. Biol. Chem 282, 25817–25830 PubMed PMC
Hirata Y, Funato Y, Takano Y and Miki H (2014) Mg2+ -dependent interactions of ATP with the cystathionine-β-synthase (CBS) comains of a magnesium transporter. J. Biol. Chem 289, 14731–14739 PubMed PMC
Hardy S, Uetani N, Wong N, Kostantin E, Labbé DP, Bégin LR, Mes-Masson A, Miranda-Saavedra D and Tremblay ML (2014) The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene, doi: 10.1038/onc.2014.33 PubMed DOI