Surface evaluation by estimation of fractal dimension and statistical tools
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
25250380
PubMed Central
PMC4163334
DOI
10.1155/2014/435935
Knihovny.cz E-zdroje
- MeSH
- fraktály * MeSH
- interpretace statistických dat MeSH
- povrchové vlastnosti MeSH
- software trendy MeSH
- testování materiálů normy statistika a číselné údaje MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Structured and complex data can be found in many applications in research and development, and also in industrial practice. We developed a methodology for describing the structured data complexity and applied it in development and industrial practice. The methodology uses fractal dimension together with statistical tools and with software modification is able to analyse data in a form of sequence (signals, surface roughness), 2D images, and dividing lines. The methodology had not been tested for a relatively large collection of data. For this reason, samples with structured surfaces produced with different technologies and properties were measured and evaluated with many types of parameters. The paper intends to analyse data measured by a surface roughness tester. The methodology shown compares standard and nonstandard parameters, searches the optimal parameters for a complete analysis, and specifies the sensitivity to directionality of samples for these types of surfaces. The text presents application of fractal geometry (fractal dimension) for complex surface analysis in combination with standard roughness parameters (statistical tool).
Zobrazit více v PubMed
Mandelbrot BB. San Francisco, Calif, USA: W. H. Freeman and Co.; 1982.
Peitgen H, Jürgens H, Saupe D. New York, NY. USA: Springer; 1992.
Evertsz CJG, Peitgen HO, Voss RF. Singapore: World Scientific Publishing; 1996.
Hilborn RC. 2003.
Gulick D. McGraw-Hill; 1992.
Chadli M, Zelinka I, Youssef T. Unknown inputs observer design for fuzzy systems with application to chaotic system reconstruction. 2013;66(2):147–154.
Zelinka I, Chadli M, Davendra D, Senkerik R, Jasek R. An investigation on evolutionary reconstruction of continuous chaotic systems. 2013;57(1-2):2–15.
Levy VJ, Lutton E, Tricot C. New York, NY, USA: Springer; 1997.
Conci A, Proenca CB. A fractal image analysis system for fabric inspection based on a box-counting method. 1998;30(20-21):1887–1895.
Wang T, Liu XG, Zhang ZY. Characterization of chaotic multiscale features on the time series of melt index in industrial propylene polymerization system. 2014;351:878–906.
Nurkkala A, Pettersson F, Saxén H. Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnace. 2011;50(15):9236–9248.
Yu L, Qi D. Applying multifractal spectrum combined with fractal discrete Brownian motion model to wood defects recognition. 2011;45(3):511–519.
Muguthu JN, Gao D. Profile fractal dimension and dimensional accuracy analysis in machining metal matrix composites (MMCs) 2013;28(10):1102–1109.
Zheng CX, Sun DW, Zheng LY. Recent applications of image texture for evaluation of food qualities—a review. 2006;17(3):113–128.
Hotař V. Fractal geometry for industrial data evaluation. 2013;66(2):113–121.
Hotař V, Novotný F, Reinischová H. Objective evaluation of the corrugation test for sheet glass surfaces. 2011;52(6):197–202.
Hotař V, Novotný F. Surface profile evaluation by fractal dimension and statistic tools. Proceedings of the 11th International Conference on Fracture; 2005; Turin, Italy. CCI Centro Congressi Internazionale;
Hotar V, Novotny F. Evaluation of surface defects by fractal geometry and statistical analysis. 2004;77:230–237.
Hotar A, Kratochvil P, Hotar V. The corrosion resistance of Fe3Al-based iron aluminides in molten glasses. 2009;47:247–252.
Hotař V. EEE Method: improved approach of compass dimension calculation. In: Zelinka I, Snasel V, Chen G, Abraham A, Rossler E, editors. Proceedings of the Advances in Intelligent Systems and Computing (Nostradamus '13); 2013; Ostrava, Czech Republic. pp. 343–351.
ISO 4287. Geneva, Switzerland: International Organization for Standardization; 1997.
Statistics I. Sas Inst.; 2005.