Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA078754
NCI NIH HHS - United States
R01 CA-78754
NCI NIH HHS - United States
PubMed
25256921
PubMed Central
PMC4311996
DOI
10.1002/anie.201408012
Knihovny.cz E-zdroje
- Klíčová slova
- DNA condensation, nucleic acids, platinum, tRNA, topoisomerase I,
- MeSH
- DNA-topoisomerasy I metabolismus MeSH
- DNA chemie účinky léků MeSH
- inhibitory topoisomerasy I chemie farmakologie MeSH
- molekulární struktura MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- plazmidy MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA-topoisomerasy I MeSH
- DNA MeSH
- inhibitory topoisomerasy I MeSH
- organoplatinové sloučeniny MeSH
The trinuclear platinum complexes (TriplatinNC-A [{Pt(NH3 )3 }2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](6+) , and TriplatinNC [{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH3 (+) )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](8+) ) are biologically active agents that bind to DNA through noncovalent (hydrogen bonding, electrostatic) interactions. Herein, we show that TriplatinNC condenses DNA with a much higher potency than conventional DNA condensing agents. Both complexes induce aggregation of small transfer RNA molecules, and TriplatinNC in particular completely inhibits DNA transcription at lower concentrations than naturally occurring spermine. Topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at concentrations which were 60 times and 250 times lower than that of spermine. The mechanisms for the biological activity of TriplatinNC-A and TriplatinNC may be associated with their ability to condense/aggregate nucleic acids with consequent inhibitory effects on crucial enzymatic activities.
Zobrazit více v PubMed
Komeda S, Moulaei T, Woods KK, Chikuma M, Farrell NP, Williams LD. J Am Chem Soc. 2006;128:16092–16103. PubMed
Komeda S, Moulaei T, Chikuma M, Odani A, Kipping R, Farrell NP, Williams LD. Nucleic Acids Res. 2011;39:325–336. PubMed PMC
Farrell N. In: Platinum-based Drugs in Cancer Therapy. Kelland LR, Farrell NP, editors. Humana Press Inc; Totowa/NJ: 2000. pp. 321–338.
Harris AL, Yang X, Hegmans A, Povirk L, Ryan JJ, Kelland L, Farrell NP. Inorg Chem. 2005;44:9598–9600. PubMed
Harris AL, Ryan JJ, Farrell N. Mol Pharmacol. 2006;69:666–672. PubMed
Qu Y, Harris A, Hegmans A, Petz A, Kabolizadeh P, Penazova H, Farrell N. J Inorg Biochem. 2004;98:1591–1598. PubMed
Malina J, Farrell NP, Brabec V. Inorg Chem. 2014;53:1662–1671. PubMed
Qu Y, Moniodis JJ, Harris AL, Yang X, Hegmans A, Povirk LF, Berners-Price SJ, Farrell NP. In: Polyamine Drug Discovery. Woster PM, Casero R, editors. The Royal Society of Chemistry; 2012. pp. 191–204.
Harris A, Qu Y, Farrell N. Inorg Chem. 2005;44:1196–1198. PubMed
Vijayanathan V, Thomas T, Shirahata A, Thomas TJ. Biochemistry. 2001;40:13644–13651. PubMed
He SQ, Arscott PG, Bloomfield VA. Biopolymers. 2000;53:329–341. PubMed
Noguchi H, Saito S, Kidoaki S, Yoshikawa K. Chem Phys Lett. 1996;261:527–533.
Widom J, Baldwin RL. J Mol Biol. 1980;144:431–453. PubMed
Post CB, Zimm BH. Biopolymers. 1982;21:2123–2137. PubMed
Luckel F, Kubo K, Tsumoto K, Yoshikawa K. FEBS Lett. 2005;579:5119–5122. PubMed
Tsumoto K, Luckel F, Yoshikawa K. Biophys Chem. 2003;106:23–29. PubMed
Yamada A, Kubo K, Nakai T, Yoshikawa K, Tsumoto K. Appl Phys Lett. 2005;86:223901.
Kabata H, Kurosawa O, Arai I, Washizu M, Margarson SA, Glass RE, Shimamoto N. Science. 1993;262:1561–1563. PubMed
Yin YW, Steitz TA. Cell. 2004;116:393–404. PubMed
Ang WH, Myint M, Lippard SJ. J Am Chem Soc. 2010;132:7429–7435. PubMed PMC
Coleman LW, Rohr LR, Bronstein IB, Holden JA. Human Pathol. 2002;33:599–607. PubMed
Palumbo M, Gatto B, Moro S, Sissi C, Zagotto G. Biochim Biophys Acta. 2002;1587:145–154. PubMed
Ulukan H, Swaan PW. Drugs. 2002;62:2039–2057. PubMed
Sukhanova A, Devy J, Pluot M, Bradley JC, Vigneron JP, Jardillier JC, Lehn JM, Nabiev I. Bioorg Med Chem. 2001;9:1255–1268. PubMed
Yang CHJ, Horton JK, Cowan KH, Schneider E. Cancer Res. 1995;55:4004–4009. PubMed
Liquori AM, Costantino L, Crescenzi V, Elia V, Giglio E, Puliti R, De Santis Savino M, Vitagliano V. J Mol Biol. 1967;24:113–122.
Pelta J, Livolant F, Sikorav JL. J Biol Chem. 1996;271:5656–5662. PubMed
Kabir A, Kumar GS. PLoS ONE. 2013;8:e70510. doi:70510.71371/journal.pone.0070510. PubMed PMC
Wedlock LE, Kilburn MR, Liu R, Shaw JA, Berners-Price SJ, Farrell NP. J Chem Soc Chem Comm Chem Comm. 2013;49:6944–6946. PubMed PMC
Mangrum JB, Engelmann BJ, Peterson EJ, Ryan JJ, Berners-Price SJ, Farrell NP. J Chem Soc Chem Comm Chem Comm. 2014;50:4056–4058. PubMed PMC
Farrell N. In: Metal Ions in Biological Systems. Sigel A, Sigel H, editors. Vol. 42. Marcel Dekker, Inc; New York, Basel: 2004. pp. 251–296. PubMed
Mangrum JB, Farrell NP. Chem Commun. 2010;46:6640–6650. PubMed PMC
Benedetti BT, Peterson EJ, Kabolizadeh P, Martinez A, Kipping R, Farrell NP. Mol Pharmaceutics. 2011;8:940–948. PubMed PMC
Silva H, Frézard F, Peterson EJ, Kabolizadeh P, Ryan JJ, Farrell NP. Mol Pharmaceutics. 2012;9:1795–1802. PubMed PMC
Volcke C, Pirotton S, Grandfils C, Humbert C, Thiry PA, Ydens I, Dubois P, Raes M. J Biotechnol. 2006;125:11–21. PubMed
Sansone F, Dudic M, Donofrio G, Rivetti C, Baldini L, Casnati A, Cellai S, Ungaro R. J Am Chem Soc. 2006;128:14528–14536. PubMed
Farrell N, Kloster MGB. 6,310,047 US Patent.
On the Biology of Werner's Complex