7Be-recoil radiolabelling of industrially manufactured silica nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25285032
PubMed Central
PMC4176561
DOI
10.1007/s11051-014-2574-0
PII: 2574
Knihovny.cz E-zdroje
- Klíčová slova
- 7Be, Cyclotron, Lithium compounds, Nanomaterials, Nanoparticles, Proton irradiation, Radiolabelling, Recoil,
- Publikační typ
- časopisecké články MeSH
Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes, any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases, proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with 7Be, which exhibits a physical half-life of 53.29 days and emits γ-rays of 478 keV energy, and is suitable for most radiotracer studies. 7Be is produced via the proton-induced nuclear reaction 7Li(p,n)7Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of 7Be atoms gives them a range that allows the 7Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the 7Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17-18 MeV that are available in most medical research centres could be used for this purpose.
Zobrazit více v PubMed
Abbas K, Cydzik I, Del Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W. Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res. 2010;12:2435–2443. doi: 10.1007/s11051-009-9806-8. DOI
Abramovich SN, Guzhovskij BJ, Zherebcov VA, Zvenigorodskij AG. Estimated values of total and differential cross sections of proton interactions with nuclei Li-6 and Li-7. Vop At Nauki i Tekhn Ser Yad Konstanty. 1984;114:17.
Ajzenberg-Selove F. Energy levels of light nuclei A = 5-10. Nucl Phys A. 1988;490:1–225. doi: 10.1016/0375-9474(88)90124-8. DOI
Aral H, Vecchio-Sadus A. Toxicity of lithium to humans and the environment-a literature review. Ecotoxicol Environ Safety. 2008;70:349–356. doi: 10.1016/j.ecoenv.2008.02.026. PubMed DOI
Farahmandjou M. A novel preparation of salt-matrix FePt nanoparticles. J Optoelectron Biomed Mat. 2009;1:124–128.
Firestone RB, Shirley VS. Table of isotopes. 8. New York: Wiley; 1999.
Gibbons JH, Macklin RL. Total neutron yields from light elements under proton and alpha bombardment. Phys Rev. 1959;114:571–580. doi: 10.1103/PhysRev.114.571. DOI
Gibson N. Grazing incidence X-ray methods for near-surface structural studies. In: Friedbacher G, Bubert H, editors. Surface and thin film analysis. Weinheim: Wiley; 2011. pp. 311–327.
Gibson N, Holzwarth U, Abbas K, Simonelli F, Kozempel J, Cydzik I, Cotogno G, Bulgheroni A, Gilliland D, Franchini F, Marmorato P, Stamm H, Kreyling W, Wenk A, Semmler-Behnke M, Buono S, Maciocco L, Burgio N. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol. 2011;85:751–773. doi: 10.1007/s00204-011-0701-6. PubMed DOI
Haynes WM, Lide DR, editors. CRC Handbook of Chemistry and Physics, 91st edition; CRC Press. New York: Taylor & Francis Group; 2010.
Holzwarth U, Bulgheroni A, Gibson N, Kozempel J, Cotogno G, Abbas K, Simonelli F, Cydzik I. Radiolabelling of nanoparticles by proton irradiation: temperature control in nanoparticulate powder targets. J Nanopart Res. 2012;14:880–895. doi: 10.1007/s11051-012-0880-y. DOI
Hugenschmidt C, Holzwarth U, Jansen M, Kohn S, Maier K. Crystallization of silica studied by positron annihilation. J Non-Cryst Sol. 1997;217:72–78. doi: 10.1016/S0022-3093(97)00104-X. DOI
Krane KS. Introductory nuclear physics. New York: Wiley; 1997.
Kreyling WG, Semmler M, Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17:140–152. doi: 10.1089/0894268041457147. PubMed DOI
Lehtinen EJ, Zachariah MR. Effect of coalescence energy release on the temporal shape evolution of nanoparticles. Phys Rev B. 2001;63:205402-1–205402-7. doi: 10.1103/PhysRevB.63.205402. DOI
Li D, Poudyal N, Nandwana V, Jin Z, Elkins K, Liu JP. Hard magnetic FePt nanoparticles by salt-matrix annealing. J Appl Phys. 2006;99:08E911-1–08E911-3.
Llop J, Gómez-Vallejo V, Gibson N. Quantitative determination of the biodistribution of nanoparticles: could radiolabelling be the answer? Nanomedicine. 2013;8:1035–1038. doi: 10.2217/nnm.13.91. PubMed DOI
Mailänder V, Landfester K. Interaction of nanoparticles with cells. Biomolecules. 2009;10:2379–2400. PubMed
Marchisio DL, Rivautella L, Baresi AA. Design and scale-up of chemical reactors for nanoparticle precipitation. AIChE J. 2006;52:1877–1887. doi: 10.1002/aic.10786. DOI
Marion JB, Young FC. Nuclear reaction analysis-graphs and tables. Amsterdam: North Holland Publishing Company; 1968. pp. 140–143.
National Nuclear Data Center (2014) Brookhaven National Laboratory, Building 197D, Upton, NY 11973-5000 (USA); http://www.nndc.bnl.gov/
Newson HW, Williamson RM, Jones KW, Gibbons JH, Marshak H. Li7(p, n), (p, p’γ) and (p,γ) reactions near neutron threshold. Phys Rev. 1957;108:1294–1300. doi: 10.1103/PhysRev.108.1294. DOI
Oughton DH, Hertel-Aas T, Pellicer E, Mendoza E, Joner EJ. Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxicol Chem. 2008;27:1883–1887. doi: 10.1897/07-578.1. PubMed DOI
Pérez-Campaña C, Gómez-Vallejo V, Martín A, San Sebastián E, Moya SE, Reese T, Ziolo RF, Llop J. Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst. 2012;137:4902–4906. doi: 10.1039/c2an35863h. PubMed DOI
Pérez-Campaña C, Gómez-Vallejo V, Puigivila M, Martín A, Calvo-Fernández T, Moya SE, Ziolo RF, Reese T, Llop J. Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano. 2013;7:3498–3505. doi: 10.1021/nn400450p. PubMed DOI
Podgoršak EB. Radiation physics for medical physicists. Berlin: Springer-Verlag; 2006.
Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Uboldi C, Kirkpatrick CJ, Holzwarth U, Rossi F. A quantitative in vitro approach to study the intracellular fate of gold nanoparticles: from synthesis to cytotoxicity. Nanotoxicology. 2009;3:296–306. doi: 10.3109/17435390903056384. DOI
Rasmussen K, Mech A, Mast J, De Temmerman PJ, Waegeneers N, Van Steen F, Pizzolon JC, De Temmerman L, Van Doren E, Jensen KA, Birkedal R, Levin M, Nielsen SH, Koponen IK, Clausen PA, Kembouche Y, Thieriet N, Spalla O, Giuot C, Rousset D, Witschger O, Bau S, Bianchi B, Shivachev B, Gilliland D, Pianella F, Ceccone G, Cotogno G, Rauscher H, Gibson N, and Stamm H (2013) Synthetic amorphous silicon dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and physico-chemical properties. JRC Repository: NM-series of representative manufactured nanomaterials. European Commission, Joint Research Centre, Institute for Health and Consumer Protection (2013) EUR 26046 EN
Sekharan KK, Laumer H, Kern BD, Gabbard F. A neutron detector for measurement of total neutron production cross sections. Nucl Instrum Meth Phys Res. 1976;133:253–257. doi: 10.1016/0029-554X(76)90617-0. DOI
Shultis JK, Faw RF. Fundamentals of nuclear science and engineering. New York: Marcel Dekker; 2002.
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21. doi: 10.1002/smll.200901158. PubMed DOI
Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and application. Wiley-VCH Verlag GmbH \& Co KGaG, Weinheim
Weiss C, Diabate S. A special issue on nanotoxicology. Arch Tox. 2011;85:705–706. doi: 10.1007/s00204-011-0707-0. PubMed DOI
Ziegler JF, Biersack JP, Littmark U (1996) The stopping and range of ions in matter, Vol.1 (new edition) Pergamon Press, New York
Ziegler JF, Ziegler MD, Biersack JP (2013) The stopping and range of ions in matter, SRIM-2013.03, to be downloaded from http://www.srim.org