Cardiac tissue engineering: a reflection after a decade of hurry

. 2014 ; 5 () : 365. [epub] 20140923

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25295012

Zobrazit více v PubMed

Balsam L. B., Wagers A. J., Christensen J. L., Kofidis T., Weissman I. L., Robbins R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 10.1038/nature02460 PubMed DOI

Bolli R., Chugh A. R., D'Amario D., Loughran J. H., Stoddard M. F., Ikram S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 10.1016/S0140-6736(11)61590-0 PubMed DOI PMC

Cristallini C., Cibrario Rocchietti E., Accomasso L., Folino A., Gallina C., Muratori L., et al. (2014). The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. Biomaterials 35, 92–104 10.1016/j.biomaterials.2013.09.058 PubMed DOI

Di Felice V., Serradifalco C., Rizzuto L., De Luca A., Rappa F., Barone R., et al. (2013). Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells. J. Tissue Eng. Regen. Med. [Epub ahead of print]. 10.1002/term.1739 PubMed DOI

Dowell J. D., Rubart M., Pasumarthi K. B., Soonpaa M. H., Field L. J. (2003). Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc. Res. 58, 336–350 10.1016/S0008-6363(03)00254-2 PubMed DOI

Engelmayr G. C., Jr., Cheng M., Bettinger C. J., Borenstein J. T., Langer R., Freed L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010 10.1038/nmat2316 PubMed DOI PMC

Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 10.1016/j.cell.2006.06.044 PubMed DOI

Forte G., Pagliari S., Pagliari F., Ebara M., Di Nardo P., Aoyagi T. (2013). Towards the generation of patient-specific patches for cardiac repair. Stem Cell Rev. 9, 313–325 10.1007/s12015-011-9325-8 PubMed DOI

Galli D., Innocenzi A., Staszewsky L., Zanetta L., Sampaolesi M., Bai A., et al. (2005). Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arterioscler. Thromb. Vasc. Biol. 25, 692–697 10.1161/01.ATV.0000156402.52029.ce PubMed DOI

Gnecchi M., He H., Liang O. D., Melo L. G., Morello F., Mu H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11, 367–368 10.1038/nm0405-367 PubMed DOI

Hamdi H., Boitard S. E., Planat-Benard V., Pouly J., Neamatalla H., Joanne P., et al. (2013). Efficacy of epicardially delivered adipose stroma cell sheets in dilated cardiomyopathy. Cardiovasc. Res. 99, 640–647 10.1093/cvr/cvt149 PubMed DOI

Jumabay M., Matsumoto Y., Yokoyama S., Kano K., Kusumi Y., Masuko T., et al. (2009). Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J. Mol. Cell. Cardiol. 47, 565–575 10.1016/j.yjmcc.2009.08.004 PubMed DOI

Laflamme M. A., Murry C. E. (2005). Regenerating the heart. Nat. Biotechnol. 23, 845–856 10.1038/nbt1117 PubMed DOI

Levenberg S., Rouwkema J., MacDonald M., Garfein E. S., Kohane D. S., Darland D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 10.1038/nbt1109 PubMed DOI

MacAdangdang J., Lee H. J., Carson D., Jiao A., Fugate J., Pabon L., et al. (2014). Capillary force lithography for cardiac tissue engineering. J. Vis. Exp. 88 10.3791/50039 PubMed DOI PMC

Makino S., Fukuda K., Miyoshi S., Konishi F., Kodama H., Pan J., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705 PubMed PMC

Mirotsou M., Jayawardena T. M., Schmeckpeper J., Gnecchi M., Dzau V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J. Mol. Cell. Cardiol. 50, 280–289 10.1016/j.yjmcc.2010.08.005 PubMed DOI PMC

Murry C. E., Soonpaa M. H., Reinecke H., Nakajima H., Nakajima H. O., Rubart M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 10.1038/nature02446 PubMed DOI

Oberwallner B., Brodarac A., Choi Y. H., Saric T., Anic P., Morawietz L., et al. (2014). Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J. Biomed. Mater. Res. A 102, 3263–3272 10.1002/jbma.35000 PubMed DOI

Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S. M., Li B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 10.1038/35070587 PubMed DOI

Pagliari S., Tirella A., Ahluwalia A., Duim S., Goumans M. J., Aoyagi T., et al. (2014). A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Front. Physiol. 5:210 10.3389/fphys.2014.00210 PubMed DOI PMC

Quaini F., Urbanek K., Beltrami A. P., Finato N., Beltrami C. A., Nadal-Ginard B., et al. (2002). Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 10.1056/NEJMoa012081 PubMed DOI

Rai R., Tallawi M., Barbani N., Frati C., Madeddu D., Cavalli S., et al. (2013). Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 3677–3687 10.1016/j.msec.2013.04.058 PubMed DOI

Rajabi-Zeleti S., Jalili-Firoozinezhad S., Azarnia M., Khayyatan F., Vahdat S., Nikeghbalian S., et al. (2014). The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 35, 970–982 10.1016/j.biomaterials.2013.10.045 PubMed DOI

Rudnicki M. A., Reuhl K. R., McBurney M. W. (1989). A transfected H-ras oncogene does not inhibit differentiation of cardiac and skeletal muscle from embryonal carcinoma cells. Biochem. Cell Biol. 67, 590–596 10.1139/o89-091 PubMed DOI

Siegel G., Krause P., Wöhrle S., Nowak P., Ayturan M., Kluba T., et al. (2012). Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev. 21, 2457–2470 10.1089/scd.2011.0626 PubMed DOI PMC

Takahashi K., Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 10.1016/j.cell.2006.07.024 PubMed DOI

Tao Z. W., Mohamed M., Hogan M., Gutierrez L., Birla R. K. (2014). Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel. J. Tissue Eng. Regen. Med. [Epub ahead of print]. 10.1002/term.1895 PubMed DOI PMC

Wickham A. M., Islam M. M., Mondal D., Phopase J., Sadhu V., Tamas E., et al. (2014). Polycaprolactone-thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 102, 1553–1561 10.1002/jbm.b.33136 PubMed DOI

Xu Y., Patnaik S., Guo X., Li Z., Lo W., Butler R., et al. (2014). Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater. 10, 3449–3462 10.1016/j.actbio.2014.04.018 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...