An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces

. 2014 ; 16 (3) : 119-27.

Jazyk angličtina Země Polsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25307446
Odkazy

PubMed 25307446
PII: 101194794
Knihovny.cz E-zdroje

This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biomechanical analysis of INFINITY rehabilitation method for treatment of low back pain

. 2017 May ; 29 (5) : 832-838. [epub] 20170516

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...