Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
281605
European Research Council - International
HHSN272200900018C
NIAID NIH HHS - United States
PubMed
25336457
PubMed Central
PMC4212838
DOI
10.1128/mbio.01972-14
PII: mBio.01972-14
Knihovny.cz E-zdroje
- MeSH
- Acinetobacter účinky léků enzymologie genetika izolace a purifikace MeSH
- aminoglykosidy farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence MeSH
- Escherichia coli enzymologie genetika MeSH
- fylogeneze MeSH
- kanamycinkinasa genetika MeSH
- konjugace genetická MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiologie životního prostředí MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- přenos genů horizontální MeSH
- promotorové oblasti (genetika) MeSH
- rozptýlené repetitivní sekvence MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aminoglykosidy MeSH
- antibakteriální látky MeSH
- kanamycinkinasa MeSH
The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before disseminating to phylogenetically distant genera pathogenic for humans. Using a combination of whole-genome sequencing of a collection of Acinetobacter spp. covering the breadth of the known taxonomic diversity of the genus, gene cloning, detailed promoter analysis, study of heterologous gene expression, and comparative analysis of the phylogenetic trees of aphA6 and of the bacterial hosts, we found that aphA6 originated in Acinetobacter guillouiae, an amikacin-susceptible environmental species. The gene conferred, upon mobilization, high-level resistance to the new hosts. This work stresses that nonpathogenic bacteria can act as reservoirs of resistance determinants, and it provides an example of the use of a genomic library to study the origin and dissemination of an antibiotic resistance gene to human pathogens.
Broad Institute of Harvard and MIT Cambridge Massachusetts USA
EA4043 Faculté de Pharmacie Université Paris Sud Châtenay Malabry France
Institut Pasteur Unité des Agents Antibactériens Paris France
Laboratory of Bacterial Genetics National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Dijkshoorn L, Nemec A, Seifert H. 2007. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 5:939–951. 10.1038/nrmicro1789 PubMed DOI
Turton JF, Shah J, Ozongwu C, Pike R. 2010. Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species. J. Clin. Microbiol. 48:1445–1449. 10.1128/JCM.02467-09 PubMed DOI PMC
Goldstein FW, Labigne-Roussel A, Gerbaud G, Carlier C, Collatz E, Courvalin P. 1983. Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid 10:138–147. 10.1016/0147-619X(83)90066-5 PubMed DOI
Devaud M, Kayser FH, Bächi B. 1982. Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob. Agents Chemother. 22:323–329. 10.1128/AAC.22.2.323 PubMed DOI PMC
Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2:e7. 10.1371/journal.pgen.0020007 PubMed DOI PMC
Adams MD, Chan ER, Molyneaux ND, Bonomo RA. 2010. Genomewide analysis of divergence of antibiotic resistance determinants in closely related isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 54:3569–3577. 10.1128/AAC.00057-10 PubMed DOI PMC
Magnet S, Courvalin P, Lambert T. 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45:3375–3380. 10.1128/AAC.45.12.3375-3380.2001 PubMed DOI PMC
Galimand M, Courvalin P, Lambert T. 2003. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob. Agents Chemother. 47:2565–2571. 10.1128/AAC.47.8.2565-2571.2003 PubMed DOI PMC
Magnet S, Smith TA, Zheng R, Nordmann P, Blanchard JS. 2003. Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob. Agents Chemother. 47:1577–1583. 10.1128/AAC.47.5.1577-1583.2003 PubMed DOI PMC
Lambert T. 2010. Aminoglycosides and gram-negative bacteria, p 225–242. In Courvalin P, Leclercq R, Rice LB. (ed), Antibiogram. ASM Press, Washington, DC
Nemec A, Dolzani L, Brisse S, van den Broek P, Dijkshoorn L. 2004. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among 2 strains of pan-European Acinetobacter baumannii clones. J. Med. Microbiol. 53:1233–1240. 10.1099/jmm.0.45716-0 PubMed DOI
Lambert T, Gerbaud G, Courvalin P. 1988. Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3′-aminoglycoside phosphotransferase. Antimicrob. Agents Chemother. 32:15–19. 10.1128/AAC.32.1.15 PubMed DOI PMC
Lambert T, Gerbaud G, Courvalin P. 1994. Characterization of transposon Tn1528, which confers amikacin resistance by synthesis of aminoglycoside 3′-O-phosphotransferase type VI. Antimicrob. Agents Chemother. 38:702–706. 10.1128/AAC.38.4.702 PubMed DOI PMC
Nigro SJ, Post V, Hall RM. 2011. Aminoglycoside resistance in multiply antibiotic-resistant Acinetobacter baumannii belonging to global clone 2 from Australian hospitals. J. Antimicrob. Chemother. 66:1504–1509. 10.1093/jac/dkr163 PubMed DOI
Périchon B, Goussard S, Walewski V, Krizova L, Cerqueira G, Murphy C, Feldgarden M, Wortman J, Clermont D, Nemec A, Courvalin P. 2014. Identification of 50 class D beta-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp. Antimicrob. Agents Chemother. 58:936–949. 10.1128/AAC.01261-13 PubMed DOI PMC
Dortet L, Nordmann P, Poirel L. 2012. Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 56:1693–1697. 10.1128/AAC.05583-11 PubMed DOI PMC
Toleman MA, Spencer J, Jones L, Walsh TR. 2012. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56:2773–2776. 10.1128/AAC.06297-11 PubMed DOI PMC
Clinical and Laboratory Standards Institute . 2012. Performance standards for antimicrobial susceptibility testing, vol M100-MS22. Clinical and Laboratory Standards Institute, Wayne, PA
European, Committee on Antimicrobial Susceptibility Testing . 2014. Breakpoint tables for interpretation of MICs and zone diameters, version 4.0. http://eucast.org/clinical_breakpoints/. Accessed 18 January 2014
Fong DH, Berghuis AM. 2002. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J. 21:2323–2331. 10.1093/emboj/21.10.2323 PubMed DOI PMC
Rudant E, Courvalin P, Lambert T. 1998. Characterization of IS18, an element capable of activating the silent aac(6')-Ij gene of Acinetobacter sp. 13 strain BM2716 by transposition. Antimicrob. Agents Chemother. 42:2759–2761 PubMed PMC
Hamidian M, Hancock DP, Hall RM. 2013. Horizontal transfer of an ISAba125-activated ampC gene between Acinetobacter baumannii strains leading to cephalosporin resistance. J. Antimicrob. Chemother. 68:244–245. 10.1093/jac/dks345 PubMed DOI
Courvalin P, Weisblum B, Davies J. 1977. Aminoglycoside-modifying enzyme of an antibiotic-producing bacterium acts as a determinant of antibiotic resistance in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 74:999–1003. 10.1073/pnas.74.3.999 PubMed DOI PMC
Poirel L, Figueiredo S, Cattoir V, Carattoli A, Nordmann P. 2008. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 52:1252–1256. 10.1128/AAC.01304-07 PubMed DOI PMC
Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. 2002. Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother. 46:3045–3049. 10.1128/AAC.46.9.3045-3049.2002 PubMed DOI PMC
Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. 2005. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49:3523–3525. 10.1128/AAC.49.8.3523-3525.2005 PubMed DOI PMC
Spanogiannopoulos P, Waglechner N, Koteva K, Wright GD. 2014. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc. Natl. Acad. Sci. U. S. A. 111:7102–7107. 10.1073/pnas.1402358111 PubMed DOI PMC
Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61–D65. 10.1093/nar/gkl842 PubMed DOI PMC
Lesho E, Yoon EJ, McGann P, Snesrud E, Kwak Y, Milillo M, Onmus-Leone F, Preston L, St Clair K, Nikolich M, Viscount H, Wortmann G, Zapor M, Grillot-Courvalin C, Courvalin P, Clifford R, Waterman PE. 2013. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. J. Infect. Dis. 208:1142–1151. 10.1093/infdis/jit293 PubMed DOI
Coyne S, Guigon G, Courvalin P, Périchon B. 2010. Screening and quantification of the expression of antibiotic resistance genes in Acinetobacter baumannii with a microarray. Antimicrob. Agents Chemother. 54:333–340. 10.1128/AAC.01037-09 PubMed DOI PMC
Nemec A, Musílek M, Sedo O, De Baere T, Maixnerová M, van der Reijden TJ, Zdráhal Z, Vaneechoutte M, Dijkshoorn L. 2010. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int. J. Syst. Evol. Microbiol. 60:896–903. 10.1099/ijs.0.013656-0 PubMed DOI
Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L. 2011. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res. Microbiol. 162:393–404. 10.1016/j.resmic.2011.02.006 PubMed DOI
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Martin P, Jullien E, Courvalin P. 1988. Nucleotide sequence of Acinetobacter baumannii aphA-6 gene: evolutionary and functional implications of sequence homologies with nucleotide-binding proteins, kinases and other aminoglycoside-modifying enzymes. Mol. Microbiol. 2:615–625. 10.1111/j.1365-2958.1988.tb00070.x PubMed DOI
Vila J, Ruiz J, Navia M, Becerril B, Garcia I, Perea S, Lopez-Hernandez I, Alamo I, Ballester F, Planes AM, Martinez-Beltran J, de Anta TJ. 1999. Spread of amikacin resistance in Acinetobacter baumannii strains isolated in Spain due to an epidemic strain. J. Clin. Microbiol. 37:758–761 PubMed PMC
Hunger M, Schmucker R, Kishan V, Hillen W. 1990. Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87:45–51. 10.1016/0378-1119(90)90494-C PubMed DOI
Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6')-Ih