FRIZZY PANICLE drives supernumerary spikelets in bread wheat
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25398545
PubMed Central
PMC4281007
DOI
10.1104/pp.114.250043
PII: pp.114.250043
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- genetické lokusy genetika MeSH
- květy genetika růst a vývoj MeSH
- posunová mutace genetika fyziologie MeSH
- pšenice genetika růst a vývoj fyziologie MeSH
- rostlinné geny genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characterization of genetically unrelated mutants leading to the identification of the wheat FRIZZY PANICLE (FZP) gene, encoding a member of the APETALA2/Ethylene Response Factor transcription factor family, which drives the SS trait in bread wheat. Structural and functional characterization of the three wheat FZP homoeologous genes (WFZP) revealed that coding mutations of WFZP-D cause the SS phenotype, with the most severe effect when WFZP-D lesions are combined with a frameshift mutation in WFZP-A. We provide WFZP-based resources that may be useful for genetic manipulations with the aim of improving bread wheat yield by increasing grain number.
Zobrazit více v PubMed
Acevedo E, Silva P, Silva H (2002) Wheat growth and physiology. InCurtis B, Rajaram S, Gomez Macpherson H, eds, Bread Wheat Improvement and Production. Food and Agriculture Organization of the United Nations, Rome
Amagai Y, Martinek P, Watanabe N, Kuboyama T (2014) Microsatellite mapping of genes for branched spike and soft glumes in Triticum monococcum L. Genet Resour Crop Evol 61: 465–471
Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298: 1238–1241 PubMed
Coffman FA. (1924) Supernumerary spikelets in Mindum wheat. J Hered 5: 187–192
Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O, d’Yvoire MB, Cézard L, Légée F, Blondet E, Oria N, et al. (2013) A TILLING platform for functional genomics in Brachypodium distachyon. PLoS ONE 8: e65503. PubMed PMC
Derbyshire P, Byrne ME (2013) MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium. Plant Physiol 161: 1291–1302 PubMed PMC
Dobrovolskaya O, Martinek P, Röder MS, Börner A (2008) Microsatellite mapping of a mutant gene (mrs) for multirow spike in wheat (T. aestivum). Conf Proc Breeding 2008: 133–136
Dobrovolskaya O, Martinek P, Voylokov AV, Korzun V, Röder MS, Börner A (2009) Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor Appl Genet 119: 867–874 PubMed
Feldman M. (2001) The origin of cultivated wheat. InBonjean A, Angus W, eds, The Wheat Book. Lavoisier, Paris, pp 1–56
Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109: 250–258 PubMed
Haque MA, Martinek P, Kobayashi S, Kita I, Ohwaku K, Watanabe N, Kuboyama T (2012) Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf. var. ramosoobscurum Jakubz. “Vetvistokoloskaya.” Genet Resour Crop Evol 59: 831–837
Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, et al. (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496: 91–95 PubMed
Klindworth DL, Klindworth MM, Williams ND (1997) Telosomic mapping of four genetic markers in durum wheat. J Hered 88: 229–232
Klindworth DL, Williams ND, Joppa LR (1990a) Chromosomal location of genes for supernumerary spikelets in tetraploid wheat. Genome 33: 515–520
Klindworth DL, Williams ND, Joppa LR (1990b) Inheritance of supernumerary spikelets in a tetraploid wheat cross. Genome 33: 509–514
Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130: 3841–3850 PubMed
Koric S. (1980) Study of branched gene complex of T. aestivum ssp. vulgare and its significance for wheat breeding. J Sci Agric Res 142: 271–282
Laikova LI, Arbuzova VS, Popova OM, Efremova TT, Melnick VM (2005) Study on spike branching in the T. aestivum mutant lines (cv Saratovskaya29). In PL Goncharov, RA Zilke, TN Gordeeva, eds, Proceeding of the IX Workshop on Genetics and Breeding. SB RAAS, Novosibirsk, Russia, pp 388–393
Li J, Wang Q, Wei H, Hu X, Yang W (2011) SSR mapping for locus conferring on the triple-spikelet trait of the Tibetan triple-spikelet wheat (Triticum aestivum L. concv. tripletum). Triticeae Genomics Genet 2: 1–6
Malcomber ST, Preston JC, Reinheimer R (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot Res 44: 423–479
Martinek P, M Váňová (2012) The effect of crop management practice and year on yield traits and grain quality in selected varieties and lines of winter wheat differing in spike morphology. Obilnářské Listy 4: 90–97
Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agric Sci 145: 139–149
Muramatsu M. (2009) A presumed genetic system determining the number of spikelets per rachis node in the tribe Triticeae. Breed Sci 59: 617–620
Nicolis JS, Protonotarios EN, Voulodemou I (1977) Control Markov chain models for biological hierarchies. J Theor Biol 68: 563–581 PubMed
Peng ZS, Yen C, Yang JL (1998) Chromosomal location of genes for supernumerary spikelet in bread wheat. Euphytica 103: 109–114
Pennell AL, Halloran GM (1983) Inheritance of supernumerary spikelets in wheat. Euphytica 32: 767–776
Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, Quraishi UM, Alaux M, Doležel J, Fahima T, et al. (2013) Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J 76: 1030–1044 PubMed
Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, et al. (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9: 473–484 PubMed
Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA 105: 3646–3651 PubMed PMC
Sakuma S, Salomon B, Komatsuda T (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52: 738–749 PubMed PMC
Sears ER. (1954) The Aneuploids of Common Wheat. University of Missouri, Columbia, MO, pp 3–58
Sharman BC. (1944) Branched head in wheat and wheat hybrids. Nature 153: 497–498
Swaminathan MS, Chopra VL, Sastry GRK (1966) Expression and stability of an induced mutation for ear branching in bread wheat. Curr Sci 35: 91–92
Tanaka W, Pautler M, Jackson D, Hirano HY (2013) Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 54: 313–324 PubMed
Tanno K, Takeda K (2004) On the origin of six-rowed barley with brittle rachis, agriocrithon (Hordeum vulgare ssp. vulgare f. agriocrithon [Aberg] Bowd.), based on a DNA marker closely linked to the vrs1 (six-row gene) locus. Theor Appl Genet 110: 145–150 PubMed
Yang WY, Lu BR, Hu XR, Yu Y, Zhang Y (2005) Inheritance of the triple-spikelet character in a Tibetan landrace of common wheat. Genet Resour Crop Evol 52: 847–851
Zhang RQ, Wang XE, Chen PD (2013) Inheritance and mapping of gene controlling four-rowed spike in tetraploid wheat (Triticum turgidum L.). Acta Agron Sin 39: 29–33