An original architectured NiTi silicone rubber structure for biomedical applications
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25491818
DOI
10.1016/j.msec.2014.08.062
PII: S0928-4931(14)00557-8
Knihovny.cz E-zdroje
- Klíčová slova
- Adhesion, Architectured composite, Biomedical applications, Filled silicone rubber, Interface, NiTi,
- MeSH
- argon chemie MeSH
- kyslík chemie MeSH
- nikl krev chemie MeSH
- pevnost v tahu MeSH
- silikonové elastomery chemie MeSH
- slitiny chemie MeSH
- testování materiálů MeSH
- titan krev chemie MeSH
- vzduch MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- argon MeSH
- kyslík MeSH
- nikl MeSH
- silikonové elastomery MeSH
- slitiny MeSH
- titan MeSH
- titanium nickelide MeSH Prohlížeč
This paper deals with composite structures for biomedical applications. For this purpose, an architectured tubular structure composed of Nickel Titanium (NiTi) Shape Memory Alloy (SMA) and silicone rubber was fabricated. One of the main interests of such structures is to ensure a good adhesion between its two constitutive materials. A previous study of the authors (Rey et al., 2014) has shown that the adhesion between NiTi and silicone rubber can be improved by an adhesion promoter or plasma treatment. However, adhesion promoters are often not biocompatible. Hence, plasma treatment is favored to be used in the present study. Three different gases were tested; air, argon and oxygen. The effects of these treatments on the maximum force required to pull-out a NiTi wire from the silicone rubber matrix were investigated by means of pull-out tests carried out with a self-developed device. Among the three gases, a higher maximum force was obtained for argon gas in the plasma treatment. A tube shaped architectured NiTi/silicone rubber structure was then produced using this treatment. The composite was tested by means of a bulge test. Results open a new way of investigations for architectured NiTi-silicone structures for biomechanical applications.
ENS Rennes SATIE CNRS 8029 Campus de Ker Lann 35170 Bruz France
Institute of Physics ASCR v v i Na Slovance 2 CZ 182 00 Prague 8 Czech Republic
Université de Grenoble CNRS TIMC IMAG UMR 5525 Grenoble France
Citace poskytuje Crossref.org