Modulation of induced cytotoxicity of doxorubicin by using apoferritin and liposomal cages
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25514405
PubMed Central
PMC4284748
DOI
10.3390/ijms151222960
PII: ijms151222960
Knihovny.cz E-zdroje
- MeSH
- antibiotika antitumorózní aplikace a dávkování chemie toxicita MeSH
- apoferritiny * MeSH
- doxorubicin aplikace a dávkování chemie toxicita MeSH
- inhibiční koncentrace 50 MeSH
- koně MeSH
- lidé MeSH
- liposomy * MeSH
- nádorové buněčné linie MeSH
- nosiče léků MeSH
- příprava léků MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibiotika antitumorózní MeSH
- apoferritiny * MeSH
- doxorubicin MeSH
- liposomy * MeSH
- nosiče léků MeSH
Doxorubicin is an effective chemotherapeutic drug, however, its toxicity is a significant limitation in therapy. Encapsulation of doxorubicin inside liposomes or ferritin cages decreases cardiotoxicity while maintaining anticancer potency. We synthesized novel apoferritin- and liposome-encapsulated forms of doxorubicin ("Apodox" and "lip-8-dox") and compared its toxicity with doxorubicin and Myocet on prostate cell lines. Three different prostatic cell lines PNT1A, 22Rv1, and LNCaP were chosen. The toxicity of the modified doxorubicin forms was compared to conventional doxorubicin using the MTT assay, real-time cell impedance-based cell growth method (RTCA), and flow cytometry. The efficiency of doxorubicin entrapment was 56% in apoferritin cages and 42% in the liposome carrier. The accuracy of the RTCA system was verified by flow-cytometric analysis of cell viability. The doxorubicin half maximal inhibition concentrations (IC50) were determined as 170.5, 234.0, and 169.0 nM for PNT1A, 22Rv1, and LNCaP, respectively by RTCA. Lip8-dox is less toxic on the non-tumor cell line PNT1A compared to doxorubicin, while still maintaining the toxicity to tumorous cell lines similar to doxorubicin or epirubicin (IC50 = 2076.7 nM for PNT1A vs. 935.3 and 729.0 nM for 22Rv1 and LNCaP). Apodox IC50 was determined as follows: 603.1, 1344.2, and 931.2 nM for PNT1A, 22Rv1, and LNCaP.
Zobrazit více v PubMed
Blum R.H., Carter S.K. Adriamycin—New anticancer drug with significant clinical activity. Ann. Int. Med. 1974;80:249–259. PubMed
Pommier Y., Leo E., Zhang H.L., Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010;17:421–433. doi: 10.1016/j.chembiol.2010.04.012. PubMed DOI PMC
Chatterjee K., Zhang J.Q., Honbo N., Karliner J.S. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155–162. doi: 10.1159/000265166. PubMed DOI PMC
Obryan R.M., Baker L.H., Gottlieb J.E., Rivkin S.E., Balcerzak S.P., Grumet G.N., Salmon S.E., Moon T.E., Hoogstraten B. Dose-response evaluation of adriamycin in human neoplasia. Cancer. 1977;39:1940–1948. doi: 10.1002/1097-0142(197705)39:5<1940::AID-CNCR2820390505>3.0.CO;2-0. PubMed DOI
Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI
Tardi P.G., Boman N.L., Cullis P.R. Liposomal doxorubicin. J. Drug Target. 1996;4:129–140. doi: 10.3109/10611869609015970. PubMed DOI
Rahman A., More N., Schein P.S. Doxorubicin-induced chronic cardiotoxicity and its protection by liposomal administration. Cancer Res. 1982;42:1817–1825. PubMed
Olson F., Mayhew E., Maslow D., Rustum Y., Szoka F. Characterization, toxicity and therapeutic efficacy of adriamycin encapsulated in liposomes. Eur. J. Cancer Clin. Oncol. 1982;18:167–169. doi: 10.1016/0277-5379(82)90060-8. PubMed DOI
Gabizon A., Dagan A., Goren D., Barenholz Y., Fuks Z. Liposomes as invivo carriers of adriamycin-reduced cardiac uptake and preserved anti-tumor activity in mice. Cancer Res. 1982;42:4734–4739. PubMed
Storm G., Roerdink F.H., Steerenberg P.A., Dejong W.H., Crommelin D.J.A. Influence of lipid-composition on the antitumor-activity exerted by doxorubicin-containing liposomes in a rat solid tumor-model. Cancer Res. 1987;47:3366–3372. PubMed
Balazsovits J.A.E., Mayer L.D., Bally M.B., Cullis P.R., McDonell M., Ginsberg R.S., Falk R.E. Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of doxorubicin. Cancer Chemother. Pharmacol. 1989;23:81–86. doi: 10.1007/BF00273522. PubMed DOI
Mayer L.D., Bally M.B., Cullis P.R., Wilson S.L., Emerman J.T. Comparison of free and liposome encapsulated doxorubicin tumor drug uptake and antitumor efficacy in the sc115 murine mammary-tumor. Cancer Lett. 1990;53:183–190. doi: 10.1016/0304-3835(90)90212-G. PubMed DOI
Dong H.Q., Dong C.Y., Feng Y., Ren T.B., Zhang Z.H., Li L., Li Y.Y. Engineering of peglayted camptothecin into core-shell nanomicelles for improving solubility, stability and combination delivery. Medchemcomm. 2012;3:1555–1561. doi: 10.1039/c2md20153d. DOI
Rahman A., Husain S.R., Siddiqui J., Verma M., Agresti M., Center M., Safa A.R., Glazer R.I. Liposome-mediated modulation of multidrug resistance in human hl-60 leukemia-cells. J. Natl. Cancer Inst. 1992;84:1909–1915. doi: 10.1093/jnci/84.24.1909. PubMed DOI
Gokhale P.C., Radhakrishnan B., Husain S.R., Abernethy D.R., Sacher R., Dritschilo A., Rahman A. An improved method of encapsulation of doxorubicin in liposomes: Pharmacological, toxicological and therapeutic evaluation. Br. J. Cancer. 1996;74:43–48. doi: 10.1038/bjc.1996.313. PubMed DOI PMC
Oudard S., Thierry A., Jorgensen T.J., Rahman A. Sensitization of multidrug-resistant colon cancer-cells to doxorubicin encapsulated in liposomes. Cancer Chemother. Pharmacol. 1991;28:259–265. PubMed
Thierry A.R., Rahman A., Dritschilo A. A new procedure for the preparation of liposomal doxorubicin: Biological-activity in multidrug-resistant tumor-cells. Cancer Chemother. Pharmacol. 1994;35:84–88. doi: 10.1007/BF00686289. PubMed DOI
Thierry A.R., Vige D., Coughlin S.S., Belli J.A., Dritschilo A., Rahman A. Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes. FASEB J. 1993;7:572–579. PubMed
Mickisch G.H., Rahman A., Pastan I., Gottesman M.M. Increased effectiveness of liposome-encapsulated doxorubicin in multidrug-resistant-transgenic mice compared with free doxorubicin. J. Natl. Cancer Inst. 1992;84:804–805. doi: 10.1093/jnci/84.10.804. PubMed DOI
Yang Z., Wang X.Y., Diao H.J., Zhang J.F., Li H.Y., Sun H.Z., Guo Z.J. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun. 2007;33:3453–3455. doi: 10.1039/b705326f. PubMed DOI
Meyer J.S., Sufrin G., Martin S.A. Proliferative activity of benign human-prostate, prostatic adenocarcinoma and seminal-vesicle evaluated by thymidine labeling. J. Urol. 1982;128:1353–1356. PubMed
Simsek E., Kilic M.A. Magic ferritin: A novel chemotherapeutic encapsulation bullet. J. Magn. Magn. Mater. 2005;293:509–513. doi: 10.1016/j.jmmm.2005.01.066. DOI
Tmejova K., Hynek D., Kopel P., Dostalova S., Smerkova K., Stanisavljevic M., Nguyen H.V., Nejdl L., Vaculovicova M., Krizkova S., et al. Electrochemical behaviour of doxorubicin encapsulated in apoferritin. Int. J. Electrochem. Sci. 2013;8:12658–12671.
Yang Y.W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Medchemcomm. 2011;2:1033–1049. doi: 10.1039/c1md00158b. DOI
Tseng Y.L., Liu J.J., Hong R.L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: A kinetic and efficacy study. Mol. Pharmacol. 2002;62:864–872. doi: 10.1124/mol.62.4.864. PubMed DOI
Hong R.L., Huang C.J., Tseng Y.L., Pang V.F., Chen S.T., Liu J.J., Chang F.H. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in c-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 1999;5:3645–3652. PubMed
Masarik M., Gumulec J., Hlavna M., Sztalmachova M., Babula P., Raudenska M., Pavkova-Goldbergova M., Cernei N., Sochor J., Zitka O., et al. Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining. Integr. Biol. 2012;4:672–684. doi: 10.1039/c2ib00157h. PubMed DOI
Komatsu M., Waguri S., Ueno T., Iwata J., Murata S., Tanida I., Ezaki J., Mizushima N., Ohsumi Y., Uchiyama Y., et al. Impairment of starvation-induced and constitutive autophagy in atg7-deficient mice. J. Cell Biol. 2005;169:425–434. doi: 10.1083/jcb.200412022. PubMed DOI PMC
Aitken R.J., Whiting S., de Iuliis G.N., McClymont S., Mitchell L.A., Baker M.A. Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J. Biol. Chem. 2012;287:33048–33060. doi: 10.1074/jbc.M112.366690. PubMed DOI PMC
He C.C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Ann. Rev. Genet. 2009;43:67–93. doi: 10.1146/annurev-genet-102808-114910. PubMed DOI PMC
Graeser R., Chung D.E., Esser N., Moor S., Schachtele C., Unger C., Kratz F. Synthesis and biological evaluation of an albumin-binding prodrug of doxorubicin that is cleaved by prostate-specific antigen (PSA) in a PSA-positive orthotopic prostate carcinoma model (LNCaP) Int. J. Cancer. 2008;122:1145–1154. doi: 10.1002/ijc.23050. PubMed DOI
Eom Y.W., Kim M.A., Park S.S., Goo M.J., Kwon H.J., Sohn S., Kim W.H., Yoon G., Choi K.S. Two distinct modes of cell death induced by doxorubicin: Apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 2005;24:4765–4777. doi: 10.1038/sj.onc.1208627. PubMed DOI
Maejima Y., Adachi S., Ito H., Hirao K., Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7:125–136. doi: 10.1111/j.1474-9726.2007.00358.x. PubMed DOI
Dalby K.N., Tekedereli I., Lopez-Berestein G., Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–329. doi: 10.4161/auto.6.3.11625. PubMed DOI PMC
Skjoth I.H.E., Issinger O.G. Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. Int. J. Oncol. 2006;28:217–229. PubMed
Carruba G., Leake R.E., Rinaldi F., Chalmers D., Comito L., Sorci C., Pavonemacaluso M., Castagnetta L.A.M. Steroid-growth factor interaction in human prostate-cancer. 1. Short-term effects of transforming growth-factors on growth of human prostate-cancer cells. Steroids. 1994;59:412–420. doi: 10.1016/0039-128X(94)90010-8. PubMed DOI
Herman-Antosiewicz A., Xiao H., Lew K.L., Singh S.V. Induction of p21 protein protects against sulforaphane-induced mitotic arrest in lncap human prostate cancer cell line. Mol. Cancer Ther. 2007;6:1673–1681. doi: 10.1158/1535-7163.MCT-06-0807. PubMed DOI
Kominkova M., Guran R., Rodrigo M.A.M., Kopel P., Blazkova I., Chudobova D., Nejdl L., Heger Z., Ruttkay-Nedecky B., Zitka O., et al. Study of functional qualities of different types of tailored liposomes with encapsulated doxorubicin using electrochemical and optical methods. Int. J. Electrochem. Sci. 2014;9:2993–3007.