Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25742002
PubMed Central
PMC4351039
DOI
10.1371/journal.pone.0119899
PII: PONE-D-14-41617
Knihovny.cz E-zdroje
- MeSH
- antigeny protozoální chemie imunologie MeSH
- konformace proteinů MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- Plasmodium falciparum imunologie MeSH
- protozoální proteiny chemie imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny protozoální MeSH
- merozoite surface protein 2, Plasmodium MeSH Prohlížeč
- protozoální proteiny MeSH
Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.
Centre for Biomedical Research Burnet Institute Melbourne Victoria 3004 Australia
Department of Biochemistry La Trobe University Victoria 3086 Australia
Zobrazit více v PubMed
Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. 2005; J Mol Recognit 18: 343–384. PubMed
Oldfield CJ, Dunker AK. Intrinsically disordered proteins and intrinsically disordered protein regions. 2014; Annu Rev Biochem 83: 553–584. 10.1146/annurev-biochem-072711-164947 PubMed DOI
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, et al. Structural disorder in viral proteins. 2014; Chem Rev 114: 6880–6911. 10.1021/cr4005692 PubMed DOI
Feng ZP, Zhang X, Han P, Arora N, Anders RF, Norton RS. Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes. 2006; Mol Biochem Parasitol 150: 256–267. PubMed
Pavlovic MD, Jandrlic DR, Mitic NS. Epitope distribution in ordered and disordered protein regions. Part B—Ordered regions and disordered binding sites are targets of T- and B-cell immunity. 2014; J Immunol Methods 407: 90–107. 10.1016/j.jim.2014.03.027 PubMed DOI
Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z. Intrinsic disorder and protein function. 2002; Biochemistry 41: 6573–6582. PubMed
Kwong PD, Doyle ML, Caspar DJ, Cicala C, Leavitt SA, Majeed S, et al. HIV-1 evades antibody-mediated neutralisation through conformational masking of receptor binding sites. 2002; Nature 420: 678–682. PubMed
Stahl HD, Coppel RL, Brown GV, Saint R, Lingelbach K, Cowman AF, et al. Differential antibody screening of cloned Plasmodium falciparum sequences expressed in Escherichia coli: procedure for isolation of defined antigens and analysis of human antisera. 1984; Proc Natl Acad Sci U S A 81: 2456–2460. PubMed PMC
Kemp DJ, Coppel RL, Anders RF. Repetitive proteins and genes of malaria. 1987; Annu Rev Microbiol 41: 181–208. PubMed
Adda CG, MacRaild CA, Reiling L, Wycherley K, Boyle MJ, Kienzle V, et al. Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. 2012; Infect Immun 80: 4177–4185. 10.1128/IAI.00665-12 PubMed DOI PMC
Raj DK, Nixon CP, Nixon CE, Dvorin JD, DiPetrillo CG, Pond-Tor S, et al. Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. 2014; Science 344: 871–877. 10.1126/science.1254417 PubMed DOI PMC
Richards JS, Stanisic DI, Fowkes FJ, Tavul L, Dabod E, Thompson JK, et al. Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. 2010; Clin Infect Dis 51: e50–60. 10.1086/656413 PubMed DOI
Olugbile S, Kulangara C, Bang G, Bertholet S, Suzarte E, Villard V, et al. Vaccine potentials of an intrinsically unstructured fragment derived from the blood stage-associated Plasmodium falciparum protein PFF0165c. 2009; Infect Immun 77: 5701–5709. 10.1128/IAI.00652-09 PubMed DOI PMC
Yagi M, Bang G, Tougan T, Palacpac NM, Arisue N, Aoshi T, et al. Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences. 2014; PLoS One 9: e98460 10.1371/journal.pone.0098460 PubMed DOI PMC
Foquet L, Hermsen CC, van Gemert GJ, Van Braeckel E, Weening KE, Sauerwein R, et al. Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. 2014; J Clin Invest 124: 140–144. PubMed PMC
Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. 1993; J Virol 67: 6642–6647. PubMed PMC
Foucault M, Mayol K, Receveur-Brechot V, Bussat MC, Klinguer-Hamour C, Verrier B, et al. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. 2010; Proteins 78: 1441–1456. 10.1002/prot.22661 PubMed DOI
Dyson HJ, Satterthwait AC, Lerner RA, Wright PE. Conformational preferences of synthetic peptides derived from the immunodominant site of the circumsporozoite protein of Plasmodium falciparum by 1H NMR. 1990; Biochemistry 29: 7828–7837. PubMed
Boyle MJ, Langer C, Chan JA, Hodder AN, Coppel RL, Anders RF, et al. Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum . 2014; Infect Immun 82: 924–936. 10.1128/IAI.00866-13 PubMed DOI PMC
al-Yaman F, Genton B, Anders R, Taraika J, Ginny M, Mellor S, et al. Assessment of the role of the humoral response to Plasmodium falciparum MSP2 compared to RESA and SPf66 in protecting Papua New Guinean children from clinical malaria. 1995; Parasite Immunol 17: 493–501. PubMed
Aucan C, Traore Y, Tall F, Nacro B, Traore-Leroux T, Fumoux F, et al. High immunoglobulin G2 (IgG2) and low IgG4 levels are associated with human resistance to Plasmodium falciparum malaria. 2000; Infect Immun 68: 1252–1258. PubMed PMC
Ekala MT, Jouin H, Lekoulou F, Mercereau-Puijalon O, Ntoumi F. Allelic family-specific humoral responses to merozoite surface protein 2 (MSP2) in Gabonese residents with Plasmodium falciparum infections. 2002; Clin Exp Immunol 129: 326–331. PubMed PMC
Flück C, Smith T, Beck HP, Irion A, Betuela I, Alpers MP, et al. Strain-specific humoral response to a polymorphic malaria vaccine. 2004; Infect Immun 72: 6300–6305. PubMed PMC
al-Yaman F, Genton B, Anders RF, Falk M, Triglia T, Lewis D, et al. Relationship between humoral response to Plasmodium falciparum merozoite surface antigen-2 and malaria morbidity in a highly endemic area of Papua New Guinea. 1994; Am J Trop Med Hyg 51: 593–602. PubMed
Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A, et al. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea. 2002; J Infect Dis 185: 820–827. PubMed
Osier FH, Feng G, Boyle MJ, Langer C, Zhou J, Richards JS, et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. 2014; BMC Med 12: 108 10.1186/1741-7015-12-108 PubMed DOI PMC
Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S, et al. Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. 2009; Infect Immun 77: 1165–1174. 10.1128/IAI.01129-08 PubMed DOI PMC
Taylor RR, Allen SJ, Greenwood BM, Riley EM. IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. 1998; Am J Trop Med Hyg 58: 406–413. PubMed
Osier FH, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KK, et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. 2008; Infect Immun 76: 2240–2248. 10.1128/IAI.01585-07 PubMed DOI PMC
Stubbs J, Olugbile S, Saidou B, Simpore J, Corradin G, Lanzavecchia A. Strain-transcending Fc-dependent killing of Plasmodium falciparum by merozoite surface protein 2 allele-specific human antibodies. 2011; Infect Immun 79: 1143–1152. 10.1128/IAI.01034-10 PubMed DOI PMC
McCarthy JS, Marjason J, Elliott S, Fahey P, Bang G, Malkin E, et al. A phase 1 trial of MSP2-C1, a blood-stage malaria vaccine containing 2 isoforms of MSP2 formulated with Montanide ISA 720. 2011; PLoS One 6: e24413 10.1371/journal.pone.0024413 PubMed DOI PMC
Smythe JA, Coppel RL, Day KP, Martin RK, Oduola AM, Kemp DJ, et al. Structural diversity in the Plasmodium falciparum merozoite surface antigen 2. 1991; Proc Natl Acad Sci U S A 88: 1751–1755. PubMed PMC
Fenton B, Clark JT, Khan CM, Robinson JV, Walliker D, Ridley R, et al. Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum . 1991; Mol Cell Biol 11: 963–971. PubMed PMC
Smythe JA, Peterson MG, Coppel RL, Saul AJ, Kemp DJ, Anders RF. Structural diversity in the 45-kilodalton merozoite surface antigen of Plasmodium falciparum . 1990; Mol Biochem Parasitol 39: 227–234. PubMed
Thomas AW, Carr DA, Carter JM, Lyon JA. Sequence comparison of allelic forms of the Plasmodium falciparum merozoite surface antigen MSA2. 1990; Mol Biochem Parasitol 43: 211–220. PubMed
Anders RF, Adda CG, Foley M, Norton RS. Recombinant protein vaccines against the asexual blood-stages of Plasmodium falciparum . 2010; Hum Vaccin 6: 1–15. PubMed
Osier FH, Murungi LM, Fegan G, Tuju J, Tetteh KK, Bull PC, et al. Allele-specific antibodies to Plasmodium falciparum merozoite surface protein-2 and protection against clinical malaria. 2010; Parasite Immunol 32: 193–201. 10.1111/j.1365-3024.2009.01178.x PubMed DOI PMC
Taylor RR, Smith DB, Robinson VJ, McBride JS, Riley EM. Human antibody response to Plasmodium falciparum merozoite surface protein 2 is serogroup specific and predominantly of the immunoglobulin G3 subclass. 1995; Infect Immun 63: 4382–4388. PubMed PMC
Zhang X, Perugini MA, Yao S, Adda CG, Murphy VJ, Low A, et al. Solution conformation, backbone dynamics and lipid interactions of the intrinsically unstructured malaria surface protein MSP2. 2008; J Mol Biol 379: 105–121. 10.1016/j.jmb.2008.03.039 PubMed DOI PMC
Kazimierczuk K, Zawadzka-Kazimierczuk A, Kozminski W. Non-uniform frequency domain for optimal exploitation of non-uniform sampling. 2010; J Magn Reson 205: 286–292. 10.1016/j.jmr.2010.05.012 PubMed DOI
Ferrage F, Cowburn D, Ghose R. Accurate sampling of high-frequency motions in proteins by steady-state 15N-{1H} nuclear Overhauser effect measurements in the presence of cross-correlated relaxation. 2009; J Am Chem Soc 131: 6048–6049. 10.1021/ja809526q PubMed DOI PMC
Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY. NMR studies of Brownian tumbling and internal motions in proteins. 2001; Prog Nucl Magn Reson Spectrosc 38: 197–266.
Pelupessy P, Espallargas GM, Bodenhausen G. Symmetrical reconversion: measuring cross-correlation rates with enhanced accuracy. 2003; J Magn Reson 161: 258–264. PubMed
Pelupessy P, Ferrage F, Bodenhausen G. Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance. 2007; J Chem Phys 126: 134508 PubMed
Motackova V, Novacek J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Zidek L, Sanderova H, et al. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. 2010; J Biomol NMR 48: 169–177. 10.1007/s10858-010-9447-3 PubMed DOI PMC
Adda CG, Murphy VJ, Sunde M, Waddington LJ, Schloegel J, Talbo GH, et al. Plasmodium falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils. 2009; Mol Biochem Parasitol 166: 159–171. 10.1016/j.molbiopara.2009.03.012 PubMed DOI PMC
Low A, Chandrashekaran IR, Adda CG, Yao S, Sabo JK, Zhang X, et al. Merozoite surface protein 2 of Plasmodium falciparum: expression, structure, dynamics, and fibril formation of the conserved N-terminal domain. 2007; Biopolymers 87: 12–22. PubMed
MacRaild CA, Pedersen MØ, Anders RF, Norton RS. Lipid interactions of the malaria antigen merozoite surface protein 2. 2012; Biochim Biophys Acta 1818: 2572–2578. 10.1016/j.bbamem.2012.06.015 PubMed DOI
Sharma D, Rajarathnam K. 13C NMR chemical shifts can predict disulfide bond formation. 2000; J Biomol NMR 18: 165–171. PubMed
Tamiola K, Acar B, Mulder FAA. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. 2010; J Am Chem Soc 132: 18000–18003. 10.1021/ja105656t PubMed DOI
Palmer AG. NMR characterization of the dynamics of biomacromolecules. 2004; Chemical Reviews 104: 3623–3640. PubMed
Jensen MR, Zweckstetter M, Huang JR, Blackledge M. Exploring Free-Energy Landscapes of Intrinsically Disordered Proteins at Atomic Resolution Using NMR Spectroscopy. 2014; Chem Rev 114: 6632–6660. 10.1021/cr400688u PubMed DOI
Farrow NA, Zhang O, Szabo A, Torchia DA, Kay LE. Spectral density function mapping using 15N relaxation data exclusively. 1995; J Biomol NMR 6: 153–162. PubMed
Kaderavek P, Zapletal V, Rabatinova A, Krasny L, Sklenar V, Zidek L. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. 2014; J Biomol NMR 58: 193–207. 10.1007/s10858-014-9816-4 PubMed DOI
Mittermaier AK, Kay LE. Observing biological dynamics at atomic resolution using NMR. 2009; Trends Biochem Sci 34: 601–611. 10.1016/j.tibs.2009.07.004 PubMed DOI
Lawrence N, Stowers A, Mann V, Taylor D, Saul A. Recombinant chimeric proteins generated from conserved regions of Plasmodium falciparum merozoite surface protein 2 generate antiparasite humoral responses in mice. 2000; Parasite Immunol 22: 211–221. PubMed
Saul A, Lawrence G, Smillie A, Rzepczyk CM, Reed C, Taylor D, et al. Human phase I vaccine trials of 3 recombinant asexual stage malaria antigens with Montanide ISA720 adjuvant. 1999; Vaccine 17: 3145–3159. PubMed
Epping RJ, Goldstone SD, Ingram LT. An epitope recognised by inhibitory monoclonal antibodies that react with a 51 kilodalton merozoite surface antigen in Plasmodium falciparum . 1988; Mol Biochem Parasitol 28: 1–10. PubMed
Saul A, Lord R, Jones G, Geysen HM, Gale J, Mollard R. Cross-reactivity of antibody against an epitope of the Plasmodium falciparum second merozoite surface antigen. 1989; Parasite Immunol 11: 593–601. PubMed
Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. 2006; Immunome Res 2: 2 PubMed PMC
Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. 1990; FEBS Lett 276: 172–174. PubMed
Yang X, Adda CG, MacRaild CA, Low A, Zhang X, Zeng W, et al. Identification of key residues involved in fibril formation by the conserved N-terminal region of Plasmodium falciparum merozoite surface protein 2 (MSP2). 2010; Biochimie 92: 1287–1295. 10.1016/j.biochi.2010.06.001 PubMed DOI PMC
Putaporntip C, Jongwutiwes S, Hughes AL. Differential selective pressures on the merozoite surface protein 2 locus of Plasmodium falciparum in a low endemic area. 2008; Gene 427: 51–57. 10.1016/j.gene.2008.09.009 PubMed DOI PMC
Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, Hartl DL. Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. 2010; Mol Biol Evol 27: 2198–2209. 10.1093/molbev/msq108 PubMed DOI PMC
Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, et al. Elicitation of structure-specific antibodies by epitope scaffolds. 2010; Proc Natl Acad Sci U S A 107: 17880–17887. 10.1073/pnas.1004728107 PubMed DOI PMC
Westhof E, Altschuh D, Moras D, Bloomer AC, Mondragon A, Klug A, et al. Correlation between segmental mobility and the location of antigenic determinants in proteins. 1984; Nature 311: 123–126. PubMed
Buck M, Boyd J, Redfield C, MacKenzie DA, Jeenes DJ, Archer DB, et al. Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. 1995; Biochemistry 34: 4041–4055. PubMed
Novotny J, Handschumacher M, Haber E, Bruccoleri RE, Carlson WB, Fanning DW, et al. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). 1986; Proc Natl Acad Sci U S A 83: 226–230. PubMed PMC
Anders RF. Multiple cross-reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. 1986; Parasite Immunol 8: 529–539. PubMed
Penkett CJ, Redfield C, Jones JA, Dodd I, Hubbard J, Smith RA, et al. Structural and dynamical characterization of a biologically active unfolded fibronectin-binding protein from Staphylococcus aureus . 1998; Biochemistry 37: 17054–17067. PubMed
Dutta S, Dlugosz LS, Drew DR, Ge X, Ababacar D, Rovira YI, et al. Overcoming antigenic diversity by enhancing the immunogenicity of conserved epitopes on the malaria vaccine candidate apical membrane antigen-1. 2013; PLoS Pathog 9: e1003840 10.1371/journal.ppat.1003840 PubMed DOI PMC
Chaudhury S, Reifman J, Wallqvist A. Simulation of B Cell Affinity Maturation Explains Enhanced Antibody Cross-Reactivity Induced by the Polyvalent Malaria Vaccine AMA1. 2014; J Immunol 193: 2073–2086. 10.4049/jimmunol.1401054 PubMed DOI PMC
Flück C, Schopflin S, Smith T, Genton B, Alpers MP, Beck HP, et al. Effect of the malaria vaccine Combination B on merozoite surface antigen 2 diversity. 2007; Infect Genet Evol 7: 44–51. PubMed
Scopel KK, da Silva-Nunes M, Malafronte RS, Braga EM, Ferreira MU. Variant-specific antibodies to merozoite surface protein 2 and clinical expression of Plasmodium falciparum malaria in rural Amazonians. 2007; Am J Trop Med Hyg 76: 1084–1091. PubMed
The Structural Properties in Solution of the Intrinsically Mixed Folded Protein Ataxin-3