Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

. 2015 ; 6 () : 183. [epub] 20150306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25798136

Grantová podpora
S10 OD016446 NIH HHS - United States

Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

Zobrazit více v PubMed

Agronskaia A. V., Tertoolen L., Gerritsen H. C. (2004). Fast fluorescence lifetime imaging of calcium in living cells. J. Biomed. Opt. 9, 1230–1237. 10.1117/1.1806472 PubMed DOI

Becker W. (2005). The bh TCSPC Handbook. Berlin: Becker & Hickl GmbH.

Creamer L. K., Lawrence R. C., Gilles J. (1985). Effect of acidification of cheese milk on the resultant Cheddar cheese. N. Z. J. Dairy Sci. Technol. 20, 185–203.

Dunn K. W., Maxfield F. R., Whitaker J. W., Haugland R. P. (1991). Fluorescence excitation ratio pH measurements of lysosomal ph using laser scanning confocal microscopy. Biophys. J. 59,345a.

Euston S. R., Piska I., Wium H., Qvist K. B. (2002). Controlling the structure and rheological properties of model cheese systems. Aust. J. Dairy Technol. 57, 91–98 Available online at: https://www.diaa.asn.au/publications/australian-journal-of-dairy-technology/articles/article/australian-journal-of-dairy-technology/23-adjt-articles/640-controlling-the-structure-and-rheological-properties-of-model-cheese-systems

Feeney E. P., Guinee T. P., Fox P. F. (2002). Effect of pH and calcium concentration on proteolysis in mozzarella cheese. J. Dairy Sci. 85, 1646–1654. 10.3168/jds.S0022-0302(02)74237-9 PubMed DOI

Foulquié Moreno M. R., Rea M. C., Cogan T. M., De Vuyst L. (2003). Applicability of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. Int. J. Food Microbiol. 81, 73–84. 10.1016/S0168-1605(02)00167-8 PubMed DOI

Fox P. F., McSweeney P. L. H., Cogan T. M., Guinee T. P. (2000). Fundamentals of Cheese Science. Berlin: Springer Science & Business.

Gardini F., Martuscelli M., Caruso M. C., Galgano F., Crudele M. A., Favati F., et al. . (2001). Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int. J. Food Microbiol. 64, 105–117. 10.1016/S0168-1605(00)00445-1 PubMed DOI

Garnot P., Molle D., Piot M. (1987). Influence of pH, type of enzyme and ultrafiltration on the retention of milk clotting enzymes in Camembert cheese. J. Dairy Res. 54, 315–320.

Grufferty M. B., Fox P. F. (1988). Milk alkaline proteinase. J. Dairy Res. 55, 609–630. PubMed

Han J., Burgess K. (2010). Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728. 10.1021/cr900249z PubMed DOI

Haugland R. P. (2002). Handbook of Fluorescent Probes and Research Chemicals, 9th Edn. Eugene: Molecular Probes, Inc.

Holmes D. G., Duersch J. W., Ernstrom C. A. (1977). Distribution of milk clotting enzymes between curd and whey and their survival during cheddar cheese making. J. Dairy Sci. 60, 862–869 10.3168/jds.S0022-0302(77)83955-6 DOI

Hunter R. C., Beveridge T. J. (2005). Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa. Biofilms 71, 2501–2510. 10.1128/AEM.71.5.2501 PubMed DOI PMC

Inoue S. (1995). Foundations of confocal scanned imaging in light microscopy, in Handbook of Biological Confocal Microscopy, 2nd Edn., ed Pawley J. B. (New york, NY: Plenum Press; ), 1.

Jeanson S., Chadœuf J., Madec M. N., Aly S., Floury J., Brocklehurst T. F., et al. . (2011). Spatial distribution of bacterial colonies in a model cheese. Appl. Environ. Microbiol. 77, 1493–1500. 10.1128/AEM.02233-10 PubMed DOI PMC

Jeanson S., Floury J., Issulahi A., Madec M. N., Thierry A., Lortal S. (2013). Microgradients of pH do not occur around Lactococcus colonies in a model cheese. Appl. Environ. Microbiol. 79, 6516–6518. 10.1128/AEM.01678-13 PubMed DOI PMC

Kajfasz J. K., Quivey R. G., Jr. (2011). Responses of lactic acid bacteria to acid stress, in Stress Responses of Lactic Acid Bacteria SE - 2 Food Microbiology and Food Safety, eds Tsakalidou E., Papadimitriou K. (New York, NY: Springer US; ), 23–53.

Kilcast D., Angus F. (eds.). (2007). Reducing Salt in Foods: Practical Strategies, 1st Edn. Cambridge, UK: Woodhead Publishing Ltd.

Lakowicz J. R. (2006). Principles of Fluorescence Spectroscopy, 3rd Edn. Berlin: Springer Science and Bussiness.

Laloy E., Vuillemard J. C., El Soda M. E., Simard R. E. (1996). Influence of the fat content of Cheddar cheese on retention and localization of starters. Int. Dairy J. 6, 729–740 10.1016/0958-6946(95)00068-2 DOI

Lopez C., Camier B., Gassi J.-Y. (2007). Development of the milk fat microstructure during the manufacture and ripening of Emmental cheese observed by confocal laser scanning microscopy. Int. Dairy J. 17, 235–247 10.1016/j.idairyj.2005.12.015 DOI

Lopez C., Maillard M. B., Briard-Bion V., Camier B., Hannon J. A. (2006). Lipolysis during ripening of emmental cheese considering organization of fat and preferential localization of bacteria. J. Agric. Food Chem. 54, 5855–5867. 10.1021/jf060214l PubMed DOI

McSweeney P. L. H. (2004a). Biochemistry of cheese ripening. Int. J. Dairy Technol. 57, 127–144 10.1111/j.1471-0307.2004.00147.x DOI

McSweeney P. L. H. (2004b). Biochemistry of cheese ripening: introduction and overview, in Cheese: Chemistry, Physics and Microbiology Cheese: Chemistry, Physics and Microbiology, eds Fox P. F., McSweeney P. L. H., Cogan T. M., Guinee T. P. (Amsterdam: Elsevier; ), 347–360.

Meldrum R. J., Brocklehurst T. F., Wilson D. R., Wilson P. D. G. (2003). The effects of cell immobilization, pH and sucrose on the growth of Listeria monocytogenes Scott A at 10°C. Food Microbiol. 20, 97–103 10.1016/S0740-0020(02)00083-7 DOI

Pereira C. I., Gomes A. M. P., Xavier Malcata F. (2009). Microstructure of cheese: processing, technological and microbiological considerations. Trends Food Sci. Technol. 20, 213–219 10.1016/j.tifs.2009.02.006 DOI

Scott R. (1981). Cheesemaking Practice. London; New York: Elsevier Applied Science Publishers.

Srivastava A., Krishnamoorthy G. (1997). Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH. Anal. Biochem. 249, 140–146. 10.1006/abio.1997.2164 PubMed DOI

Stadhouders J., Hup G., van der Waals C. B. (1977). Determination of calfrennet in cheese. Neth. Milk Dairy J. 31, 3–15.

Sun Y., Day R. N., Periasamy A. (2011). Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. 6, 1324–1340. 10.1038/nprot.2011.364 PubMed DOI PMC

Szmacinski H., Lakowicz J. R. (1993). Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal. Chem. 65, 1668–1674. PubMed PMC

Visser E. M. W. (1977). Contribution of enzymes from rennet starter bacteria and milk to proteolysis and flavor development in Gouda cheese. 1. Description of cheese and aseptic cheesemaking technique. Neth. Milk Dairy J. 30, 120–133.

Whitaker J. E., Haugland R. P., Ryan D., Dunn K., Maxfield F. R. (1991). Dual excitation ph sensitive conjugates of dextran and transferrin for ph measurement during endocytosis utilizing 514 nm to 488 nm excitation ratios. Biophys. J. 59, 358a.

Wimpenny J. W. T., Leistner L., Thomas L. V., Mitchell A. J., Katsaras K., Peetz P. (1995). Submerged bacterial colonies within food and model systems: their growth, distribution and interactions. Int. J. Food Microbiol. 28, 299–315. 10.1016/0168-1605(95)00065-8 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...