Multicomponent model of deformation and detachment of a biofilm under fluid flow

. 2015 May 06 ; 12 (106) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid25808342

Grantová podpora
R01 GM095959 NIGMS NIH HHS - United States
U01 HL116330 NHLBI NIH HHS - United States
1-R01 GM095959 NIGMS NIH HHS - United States
U01-HL116330 NHLBI NIH HHS - United States

A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between [Formula: see text] and [Formula: see text] m s(-1) which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than [Formula: see text]. Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations.

Zobrazit více v PubMed

Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209. (10.1146/annurev.micro.56.012302.160705) PubMed DOI

Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. 2009. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 3, 636–643. (10.1016/j.tibtech.2009.08.001) PubMed DOI

Chen AY, Deng Z, Billings AN, Seker UOS, Lu MY, Citorik RJ, Zakeri B, Lu TK. 2014. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523. (10.1038/NMAT3912) PubMed DOI PMC

Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122. (10.1038/nrd1008) PubMed DOI

Pavissich JP, Aybar M, Martin KJ, Nerenberg R. 2014. A methodology to assess the effects of biofilm roughness on substrate fluxes using image analysis, substrate profiling, and mathematical modelling. Water. Sci. Technol. 69, 1932–1941. (10.2166/wst.2014.103) PubMed DOI

Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P. 2004. Commonality of elastic relaxation times in biofilms. Phys. Rev. Lett. 93, 098102 (10.1103/PhysRevLett.93.098102) PubMed DOI

Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633. (10.1038/nrmicro2415) PubMed DOI

Liekeg O, Caldara M, Baugärtel R, Ribbeck K. 2011. Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter 7, 3307–3314. (10.139/C0SM01467B) PubMed DOI PMC

Stewart PS. 2014. Biophysics of biofilm infection. FEMS Pathog. Dis. 70, 212–218. (10.1111/2049-632X.12118) PubMed DOI PMC

Wilking JN, Angelini TE, Seminara A, Brenner MP, Weitz DA. 2011. Biofilms as complex fluids. MRS Bull. 36, 385–391. (10.1557/jmr.2014.101) DOI

Alpkvist E, Klapper I. 2007. Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci. Technol. 55, 265–273. (10.2166/wst.2007.267) PubMed DOI

Zhang T, Cogan NG, Wang Q. 2008. Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69, 641–669. (10.1137/070691966) DOI

Lindley B, Wang Q, Zhang T. 2012. Multicomponent hydrodynamic model for heterogeneous biofilms: two-dimensional numerical simulations of growth and interaction with flows. Phys. Rev. E. 85, 031908 (10.1103/PhysRevE.85.031908) PubMed DOI

Zhang T, Cogan NG, Wang Q. 2008. Phase-field models for biofilms II. 2-D numerical simulations of biofilm–flow interaction. Commun. Comput. Phys. 4, 72–101.

Cahn JW, Hilliard JE. 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267. (10.1063/1.1744102) DOI

van der Waals JD. 1979. The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 197–244. (10.1007/BF01011514) DOI

Klapper I, Dockery J. 2006. Role of cohesion in the material description of biofilms. Phys. Rev. E. 74, 031902 (10.1103/PhysRevE.74.031902) PubMed DOI

Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A. 2006. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng. 94, 962–979. (10.1002/bit.20917) PubMed DOI

Xavier J, Picioreanu C, van Loosdrecht MCM. 2005. A general description of detachment for multidimensional modelling of biofilms. Biotechnol. Bioeng. 91, 651–669. (10.1002/bit.20544) PubMed DOI

Cogan NG, Keener JP. 2004. The role of the biofilm matrix in structural development. Math. Med. Biol. 21, 147–166. (10.1093/imammb/21.2.147) PubMed DOI

Cogan NG, Guy RD. 2010. Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J. 4, 11–25. (10.2976/1.3291142) PubMed DOI PMC

Taherzadeh D, Picioreanu C, Horn H. 2012. Mass transfer enhancement in moving biofilm structures. Biophys. J. 102, 1483–1492. (10.1016/j.bpj.2012.02.033) PubMed DOI PMC

Klapper I. 2004. Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth. Bull. Math. Biol. 66, 809–824. (10.1016/j.bulm.2003.11.008) PubMed DOI

Zhang TY, Klapper I. 2014. Critical occlusion via biofilm induced calcite precipitation in porous media. New J. Phys. 16, 055009 (10.1088/1367-2630/16/5/055009) DOI

Klapper I, Dockery J. 2010. Mathematical description of microbial biofilms. SIAM Rev. 52, 221–265. (10.1137/080739720) DOI

Wang Q, Zhang T. 2010. Review of mathematical models for biofilms. Sol. State Commun. 150, 1009–1022. (10.1016/j.ssc.2010.01.021) DOI

Monds RD, O'Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87. (10.1016/j.tim.2008.11.001) PubMed DOI

Wang Q, Zhang T. 2012. Kinetic theories for biofilms. Discrete Cont. Dyn. B 17, 1027–1059. (10.3934/dcdsb.2012.17.1027) DOI

Ehret AE, Böl M. 2013. Modelling mechanical characteristics of microbial biofilms by network theory. J. R. Soc. Interface 10, 20120676 (10.1098/rsif.2012.0676) PubMed DOI PMC

Yue P, Feng JJ, Liu C, Shen J. 2004. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317. (10.1017/S0022112004000370) DOI

Eisenberg B, Hyon Y, Liu C. 2010. Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (10.1063/1.3476262) PubMed DOI PMC

Du Q, Liu C, Ryham R, Wang X. 2009. Energetic variational approaches in modeling vesicle and fluid interactions. Physica D 238, 923–930. (10.1016/j.physd.2009.02.015) DOI

Drescher K, Shen Y, Bassler BL, Stone HA. 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc. Natl Acad. Sci. USA 110, 4345–4350. (10.1073/pnas.1300321110) PubMed DOI PMC

Martin KJ, Nerenberg R. 2012. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Biores. Technol. 122, 83–94. (10.1016/j.biortech.2012.02.110) PubMed DOI

Böl M, Ehret AE, Bolea Albero A, Hellriegel J, Krull R. 2013. Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit. Rev. Biotechnol. 33, 145–171. (10.3109/07388551.2012.679250) PubMed DOI

Peterson BW, van der Mei HC, Sjollema J, Busscher HJ, Sharma PK. 2013. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. MBio 4, e00497 (10.1128/mBio.00497-13) PubMed DOI PMC

Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone HA. 2011. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys. J. 100, 1392–1399. (10.1016/j.bpj.2011.01.065) PubMed DOI PMC

Das S, Kumar A. 2013. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets. (http://arXiv.org/abs/1312.6056) PubMed PMC

Stoodley P, Cargo R, Rupp C, Wilson S, Klapper I. 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29, 361–367. (10.1038/sj.jim.7000282) PubMed DOI

Yang X, Forest MG, Li H, Liu C, Shen J, Wang Q, Chen F. 2013. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 236, 1–14. (10.1016/j.jcp.2012.10.042) DOI

Hyon Y, Kwak Y, Liu C. 2010. Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Cont. Dyn. A 26, 1291–1304. (10.3934/dcds.2010.26.1291) DOI

Berdichevsky VL. 2009. Variational principles of continuum mechanics. New York, NY: Springer.

Brenier Y. 1989. The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2 225–255. (10.1090/S0894-0347-1989-0969419-8) DOI

Lin FH, Liu C, Zhang P. 2005. On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471. (10.1002/cpa.20074) DOI

Liu C, Walkington NJ. 2001. An Eulerian description of fluids containing visco-hyperelastic particles. Arch. Ration. Mech. Anal. 159, 229–252. (10.1007/s002050100158) DOI

Bird RB, Armstrong RC, Hassafer O. 2009. Dynamics of polymeric fluids, vol. 1 New York, NY: Wiley.

Lowengrub J, Truskinovsky L. 1998. Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654. (10.1098/rspa.1998.0273) DOI

Liu C, Shen J. 2003. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228. (10.1016/S0167-2789(03)00030-7) DOI

Hecht F. 2012. New development in FreeFem++. J. Numer. Math. 20, 251–265. (10.1515/jnum-2012-0013) DOI

Guillén-González F, Tierra G. 2013. On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234 140–171. (10.1016/j.jcp.2012.09.020) DOI

Guillén-González F, Tierra G. 2014. Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 68 821–846. (10.1016/j.camwa.2014.07.014) DOI

Tierra G, Guillén-González F. 2015. Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. (10.1007/s11831-014-9112-1) DOI

Wloka M, Rehage H, Flemming H-C, Wingender J. 2004. Rheological properties of viscoelastic biofilm extracellular polymeric substances and comparison to the behaviour of calcium alginate gels. Colloid Polym. Sci. 282, 1067–1076. (10.1007/S00396-003-1033-8) DOI

Vadillo-Rodriguez V, Schooling S, Dutcher JR. 2009. In situ characterization of differences in the viscoelastic response of individual Gram-negative and Gram-positive bacterial cells. J. Bacteriol. 191, 5518–5525. (10.1128/JB.00528-09) PubMed DOI PMC

Rusconi R, Lecuyer S, Guglielmini L, Stone HA. 2010. Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7, 1293–1299. (10.1098/rsif.2010.0096) PubMed DOI PMC

Stewart PS. 2012. Mini-review: convection around biofilms. Biofouling 28, 187–198. (10.1080/08927014.2012.662641) PubMed DOI

Galy J, Latour-Lambert P, Zrelli K, Ghigo JM, Beloin C, Henry N. 2012. Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys. J. 103, 1400–1408. (10.1016/j.bpj.2012.07.001) PubMed DOI PMC

Feng JJ, Liu C, Shen J, Yue P. 2005. An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. In Modeling of soft matter, pp. 1–26. New York, NY: Springer.

Sweet CR, Chatterjee S, Xu ZL, Bisordi K, Rosen ED, Alber M. 2011. Modeling platelet–blood flow interaction using subcellular element langevin method. J. R. Soc. Interface 8, 1760–1771. (10.1098/rsif.2011.0180) PubMed DOI PMC

Xu ZL, Kim O, Kamocka M, Rosen E, Alber M. 2012. Multi-scale models of thrombogenesis. Wiley Interdiscip. Rev. Syst. Biol Med. 4, 237–246. (10.1002/wsbm.1160) PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...