Multicomponent model of deformation and detachment of a biofilm under fluid flow
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM095959
NIGMS NIH HHS - United States
U01 HL116330
NHLBI NIH HHS - United States
1-R01 GM095959
NIGMS NIH HHS - United States
U01-HL116330
NHLBI NIH HHS - United States
PubMed
25808342
PubMed Central
PMC4424679
DOI
10.1098/rsif.2015.0045
PII: rsif.2015.0045
Knihovny.cz E-zdroje
- Klíčová slova
- biofilm, continuum mechanics, detachment, energetic variation, phase-field model, viscoelasticity,
- MeSH
- Bacteria cytologie MeSH
- bakteriální adheze fyziologie MeSH
- bakteriální polysacharidy metabolismus MeSH
- biofilmy růst a vývoj MeSH
- biologické modely * MeSH
- fyziologie bakterií MeSH
- mechanický stres MeSH
- mikrofluidika metody MeSH
- modul pružnosti fyziologie MeSH
- pevnost ve smyku fyziologie MeSH
- počítačová simulace MeSH
- velikost buňky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální polysacharidy MeSH
A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between [Formula: see text] and [Formula: see text] m s(-1) which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than [Formula: see text]. Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations.
Zobrazit více v PubMed
Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209. (10.1146/annurev.micro.56.012302.160705) PubMed DOI
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. 2009. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 3, 636–643. (10.1016/j.tibtech.2009.08.001) PubMed DOI
Chen AY, Deng Z, Billings AN, Seker UOS, Lu MY, Citorik RJ, Zakeri B, Lu TK. 2014. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523. (10.1038/NMAT3912) PubMed DOI PMC
Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122. (10.1038/nrd1008) PubMed DOI
Pavissich JP, Aybar M, Martin KJ, Nerenberg R. 2014. A methodology to assess the effects of biofilm roughness on substrate fluxes using image analysis, substrate profiling, and mathematical modelling. Water. Sci. Technol. 69, 1932–1941. (10.2166/wst.2014.103) PubMed DOI
Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P. 2004. Commonality of elastic relaxation times in biofilms. Phys. Rev. Lett. 93, 098102 (10.1103/PhysRevLett.93.098102) PubMed DOI
Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633. (10.1038/nrmicro2415) PubMed DOI
Liekeg O, Caldara M, Baugärtel R, Ribbeck K. 2011. Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter 7, 3307–3314. (10.139/C0SM01467B) PubMed DOI PMC
Stewart PS. 2014. Biophysics of biofilm infection. FEMS Pathog. Dis. 70, 212–218. (10.1111/2049-632X.12118) PubMed DOI PMC
Wilking JN, Angelini TE, Seminara A, Brenner MP, Weitz DA. 2011. Biofilms as complex fluids. MRS Bull. 36, 385–391. (10.1557/jmr.2014.101) DOI
Alpkvist E, Klapper I. 2007. Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci. Technol. 55, 265–273. (10.2166/wst.2007.267) PubMed DOI
Zhang T, Cogan NG, Wang Q. 2008. Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69, 641–669. (10.1137/070691966) DOI
Lindley B, Wang Q, Zhang T. 2012. Multicomponent hydrodynamic model for heterogeneous biofilms: two-dimensional numerical simulations of growth and interaction with flows. Phys. Rev. E. 85, 031908 (10.1103/PhysRevE.85.031908) PubMed DOI
Zhang T, Cogan NG, Wang Q. 2008. Phase-field models for biofilms II. 2-D numerical simulations of biofilm–flow interaction. Commun. Comput. Phys. 4, 72–101.
Cahn JW, Hilliard JE. 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267. (10.1063/1.1744102) DOI
van der Waals JD. 1979. The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 197–244. (10.1007/BF01011514) DOI
Klapper I, Dockery J. 2006. Role of cohesion in the material description of biofilms. Phys. Rev. E. 74, 031902 (10.1103/PhysRevE.74.031902) PubMed DOI
Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A. 2006. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng. 94, 962–979. (10.1002/bit.20917) PubMed DOI
Xavier J, Picioreanu C, van Loosdrecht MCM. 2005. A general description of detachment for multidimensional modelling of biofilms. Biotechnol. Bioeng. 91, 651–669. (10.1002/bit.20544) PubMed DOI
Cogan NG, Keener JP. 2004. The role of the biofilm matrix in structural development. Math. Med. Biol. 21, 147–166. (10.1093/imammb/21.2.147) PubMed DOI
Cogan NG, Guy RD. 2010. Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J. 4, 11–25. (10.2976/1.3291142) PubMed DOI PMC
Taherzadeh D, Picioreanu C, Horn H. 2012. Mass transfer enhancement in moving biofilm structures. Biophys. J. 102, 1483–1492. (10.1016/j.bpj.2012.02.033) PubMed DOI PMC
Klapper I. 2004. Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth. Bull. Math. Biol. 66, 809–824. (10.1016/j.bulm.2003.11.008) PubMed DOI
Zhang TY, Klapper I. 2014. Critical occlusion via biofilm induced calcite precipitation in porous media. New J. Phys. 16, 055009 (10.1088/1367-2630/16/5/055009) DOI
Klapper I, Dockery J. 2010. Mathematical description of microbial biofilms. SIAM Rev. 52, 221–265. (10.1137/080739720) DOI
Wang Q, Zhang T. 2010. Review of mathematical models for biofilms. Sol. State Commun. 150, 1009–1022. (10.1016/j.ssc.2010.01.021) DOI
Monds RD, O'Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87. (10.1016/j.tim.2008.11.001) PubMed DOI
Wang Q, Zhang T. 2012. Kinetic theories for biofilms. Discrete Cont. Dyn. B 17, 1027–1059. (10.3934/dcdsb.2012.17.1027) DOI
Ehret AE, Böl M. 2013. Modelling mechanical characteristics of microbial biofilms by network theory. J. R. Soc. Interface 10, 20120676 (10.1098/rsif.2012.0676) PubMed DOI PMC
Yue P, Feng JJ, Liu C, Shen J. 2004. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317. (10.1017/S0022112004000370) DOI
Eisenberg B, Hyon Y, Liu C. 2010. Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (10.1063/1.3476262) PubMed DOI PMC
Du Q, Liu C, Ryham R, Wang X. 2009. Energetic variational approaches in modeling vesicle and fluid interactions. Physica D 238, 923–930. (10.1016/j.physd.2009.02.015) DOI
Drescher K, Shen Y, Bassler BL, Stone HA. 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc. Natl Acad. Sci. USA 110, 4345–4350. (10.1073/pnas.1300321110) PubMed DOI PMC
Martin KJ, Nerenberg R. 2012. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Biores. Technol. 122, 83–94. (10.1016/j.biortech.2012.02.110) PubMed DOI
Böl M, Ehret AE, Bolea Albero A, Hellriegel J, Krull R. 2013. Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit. Rev. Biotechnol. 33, 145–171. (10.3109/07388551.2012.679250) PubMed DOI
Peterson BW, van der Mei HC, Sjollema J, Busscher HJ, Sharma PK. 2013. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. MBio 4, e00497 (10.1128/mBio.00497-13) PubMed DOI PMC
Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone HA. 2011. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys. J. 100, 1392–1399. (10.1016/j.bpj.2011.01.065) PubMed DOI PMC
Das S, Kumar A. 2013. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets. (http://arXiv.org/abs/1312.6056) PubMed PMC
Stoodley P, Cargo R, Rupp C, Wilson S, Klapper I. 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29, 361–367. (10.1038/sj.jim.7000282) PubMed DOI
Yang X, Forest MG, Li H, Liu C, Shen J, Wang Q, Chen F. 2013. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 236, 1–14. (10.1016/j.jcp.2012.10.042) DOI
Hyon Y, Kwak Y, Liu C. 2010. Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Cont. Dyn. A 26, 1291–1304. (10.3934/dcds.2010.26.1291) DOI
Berdichevsky VL. 2009. Variational principles of continuum mechanics. New York, NY: Springer.
Brenier Y. 1989. The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2 225–255. (10.1090/S0894-0347-1989-0969419-8) DOI
Lin FH, Liu C, Zhang P. 2005. On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471. (10.1002/cpa.20074) DOI
Liu C, Walkington NJ. 2001. An Eulerian description of fluids containing visco-hyperelastic particles. Arch. Ration. Mech. Anal. 159, 229–252. (10.1007/s002050100158) DOI
Bird RB, Armstrong RC, Hassafer O. 2009. Dynamics of polymeric fluids, vol. 1 New York, NY: Wiley.
Lowengrub J, Truskinovsky L. 1998. Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654. (10.1098/rspa.1998.0273) DOI
Liu C, Shen J. 2003. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228. (10.1016/S0167-2789(03)00030-7) DOI
Hecht F. 2012. New development in FreeFem++. J. Numer. Math. 20, 251–265. (10.1515/jnum-2012-0013) DOI
Guillén-González F, Tierra G. 2013. On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234 140–171. (10.1016/j.jcp.2012.09.020) DOI
Guillén-González F, Tierra G. 2014. Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 68 821–846. (10.1016/j.camwa.2014.07.014) DOI
Tierra G, Guillén-González F. 2015. Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. (10.1007/s11831-014-9112-1) DOI
Wloka M, Rehage H, Flemming H-C, Wingender J. 2004. Rheological properties of viscoelastic biofilm extracellular polymeric substances and comparison to the behaviour of calcium alginate gels. Colloid Polym. Sci. 282, 1067–1076. (10.1007/S00396-003-1033-8) DOI
Vadillo-Rodriguez V, Schooling S, Dutcher JR. 2009. In situ characterization of differences in the viscoelastic response of individual Gram-negative and Gram-positive bacterial cells. J. Bacteriol. 191, 5518–5525. (10.1128/JB.00528-09) PubMed DOI PMC
Rusconi R, Lecuyer S, Guglielmini L, Stone HA. 2010. Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7, 1293–1299. (10.1098/rsif.2010.0096) PubMed DOI PMC
Stewart PS. 2012. Mini-review: convection around biofilms. Biofouling 28, 187–198. (10.1080/08927014.2012.662641) PubMed DOI
Galy J, Latour-Lambert P, Zrelli K, Ghigo JM, Beloin C, Henry N. 2012. Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys. J. 103, 1400–1408. (10.1016/j.bpj.2012.07.001) PubMed DOI PMC
Feng JJ, Liu C, Shen J, Yue P. 2005. An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. In Modeling of soft matter, pp. 1–26. New York, NY: Springer.
Sweet CR, Chatterjee S, Xu ZL, Bisordi K, Rosen ED, Alber M. 2011. Modeling platelet–blood flow interaction using subcellular element langevin method. J. R. Soc. Interface 8, 1760–1771. (10.1098/rsif.2011.0180) PubMed DOI PMC
Xu ZL, Kim O, Kamocka M, Rosen E, Alber M. 2012. Multi-scale models of thrombogenesis. Wiley Interdiscip. Rev. Syst. Biol Med. 4, 237–246. (10.1002/wsbm.1160) PubMed DOI