Observation of the diphoton decay of the Higgs boson and measurement of its properties

. 2014 ; 74 (10) : 3076. [epub] 20141015

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25814871

Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.

Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt

Baylor University Waco USA

Benemerita Universidad Autonoma de Puebla Puebla Mexico

Bhabha Atomic Research Centre Mumbai India

Bogazici University Istanbul Turkey

Boston University Boston USA

Brown University Providence USA

Brunel University Uxbridge UK

California Institute of Technology Pasadena USA

Carnegie Mellon University Pittsburgh USA

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules CNRS IN2P3 Villeurbanne France

Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil

Centro de Investigacion y de Estudios Avanzados del IPN Mexico City Mexico

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas Madrid Spain

CERN European Organization for Nuclear Research Geneva Switzerland

Charles University Prague Czech Republic

Chonbuk National University Chonju Korea

Chonnam National University Institute for Universe and Elementary Particles Kwangju Korea

Chulalongkorn University Bangkok Thailand

Cornell University Ithaca USA

Cukurova University Adana Turkey

Department of Physics University of Helsinki Helsinki Finland

Deutsches Elektronen Synchrotron Hamburg Germany

DSM IRFU CEA Saclay Gif sur Yvette France

Fairfield University Fairfield USA

Fermi National Accelerator Laboratory Batavia USA

Florida Institute of Technology Melbourne USA

Florida International University Miami USA

Florida State University Tallahassee USA

Ghent University Ghent Belgium

Helsinki Institute of Physics Helsinki Finland

Imperial College London UK

INFN Laboratori Nazionali di Frascati Frascati Italy

INFN Sezione di Bari Università di Bari Politecnico di Bari Bari Italy

INFN Sezione di Bologna Università di Bologna Bologna Italy

INFN Sezione di Catania Università di Catania CSFNSM Catania Italy

INFN Sezione di Firenze Università di Firenze Florence Italy

INFN Sezione di Genova Università di Genova Genoa Italy

INFN Sezione di Milano Bicocca Università di Milano Bicocca Milan Italy

INFN Sezione di Napoli Università di Napoli 'Federico II' Università della Basilicata Naples Italy

INFN Sezione di Padova Università di Padova Università di Trento Padua Italy

INFN Sezione di Pavia Università di Pavia Pavia Italy

INFN Sezione di Perugia Università di Perugia Perugia Italy

INFN Sezione di Pisa Università di Pisa Scuola Normale Superiore di Pisa Pisa Italy

INFN Sezione di Roma Università di Roma Rome Italy

INFN Sezione di Torino Università di Torino Università del Piemonte Orientale Turin Italy

INFN Sezione di Trieste Università di Trieste Trieste Italy

Institut de Physique Nucléaire de Lyon Université de Lyon Université Claude Bernard Lyon 1 CNRS IN2P3 Villeurbanne France

Institut für Experimentelle Kernphysik Karlsruhe Germany

Institut für Hochenergiephysik der OeAW Wien Austria

Institut Pluridisciplinaire Hubert Curien Université de Strasbourg Université de Haute Alsace Mulhouse CNRS IN2P3 Strasbourg France

Institute for Nuclear Research and Nuclear Energy Sofia Bulgaria

Institute for Nuclear Research Moscow Russia

Institute for Particle Physics ETH Zurich Zurich Switzerland

Institute for Research in Fundamental Sciences Tehran Iran

Institute for Theoretical and Experimental Physics Moscow Russia

Institute of Experimental Physics Faculty of Physics University of Warsaw Warsaw Poland

Institute of High Energy Physics and Informatization Tbilisi State University Tbilisi Georgia

Institute of High Energy Physics Beijing China

Institute of Nuclear and Particle Physics NCSR Demokritos Aghia Paraskevi Greece

Institute of Nuclear Research ATOMKI Debrecen Hungary

Institute Rudjer Boskovic Zagreb Croatia

Instituto de Física de Cantabria CSIC Universidad de Cantabria Santander Spain

Istanbul Technical University Istanbul Turkey

Johns Hopkins University Baltimore USA

Joint Institute for Nuclear Research Dubna Russia

Kangwon National University Chunchon Korea

Kansas State University Manhattan USA

Korea University Seoul Korea

Kyungpook National University Taegu Korea

Laboratoire Leprince Ringuet Ecole Polytechnique IN2P3 CNRS Palaiseau France

Laboratório de Instrumentação e Física Experimental de Partículas Lisbon Portugal

Lappeenranta University of Technology Lappeenranta Finland

Lawrence Livermore National Laboratory Livermore USA

Massachusetts Institute of Technology Cambridge USA

National Central University Chung Li Taiwan

National Centre for Nuclear Research Swierk Poland

National Centre for Particle and High Energy Physics Minsk Belarus

National Centre for Particle Physics Universiti Malaya Kuala Lumpur Malaysia

National Centre for Physics Quaid 1 Azam University Islamabad Pakistan

National Institute of Chemical Physics and Biophysics Tallinn Estonia

National Institute of Science Education and Research Bhubaneswar India

National Scientific Center Kharkov Institute of Physics and Technology Kharkiv Ukraine

National Taiwan University Taipei Taiwan

Northeastern University Boston USA

Northwestern University Evanston USA

P N Lebedev Physical Institute Moscow Russia

Panjab University Chandigarh India

Paul Scherrer Institut Villigen Switzerland

Petersburg Nuclear Physics Institute Gatchina Russia

Physics Department Middle East Technical University Ankara Turkey

Princeton University Princeton USA

Purdue University Calumet Hammond USA

Purdue University West Lafayette USA

Rice University Houston USA

Rutgers The State University of New Jersey Piscataway USA

Rutherford Appleton Laboratory Didcot UK

RWTH Aachen University 1 Physikalisches Institut Aachen Germany

RWTH Aachen University 3 Physikalisches Institut A Aachen Germany

RWTH Aachen University 3 Physikalisches Institut B Aachen Germany

Saha Institute of Nuclear Physics Kolkata India

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University Moscow Russia

State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China

State Research Center of Russian Federation Institute for High Energy Physics Protvino Russia

State University of New York at Buffalo Buffalo USA

Sungkyunkwan University Suwon Korea

Tata Institute of Fundamental Research Mumbai India

Technical University of Split Split Croatia

Texas A and M University College Station USA

Texas Tech University Lubbock USA

The Ohio State University Columbus USA

The Rockefeller University New York USA

The University of Alabama Tuscaloosa USA

The University of Iowa Iowa City USA

The University of Kansas Lawrence USA

Universidad Autónoma de Madrid Madrid Spain

Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico

Universidad de Los Andes Bogotá Colombia

Universidad de Oviedo Oviedo Spain

Universidad Iberoamericana Mexico City Mexico

Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil

Universidade Estadual Paulista Universidade Federal do ABC São Paulo Brazil

Universität Zürich Zurich Switzerland

Université Catholique de Louvain Louvain la Neuve Belgium

Université de Mons Mons Belgium

Université Libre de Bruxelles Bruxelles Belgium

Universiteit Antwerpen Antwerp Belgium

University College Dublin Dublin Ireland

University of Athens Athens Greece

University of Auckland Auckland New Zealand

University of Belgrade Faculty of Physics and Vinca Institute of Nuclear Sciences Belgrade Serbia

University of Bristol Bristol UK

University of California Davis USA

University of California Los Angeles USA

University of California Riverside Riverside USA

University of California San Diego La Jolla USA

University of California Santa Barbara Santa Barbara USA

University of Canterbury Christchurch New Zealand

University of Colorado at Boulder Boulder USA

University of Cyprus Nicosia Cyprus

University of Debrecen Debrecen Hungary

University of Delhi Delhi India

University of Florida Gainesville USA

University of Hamburg Hamburg Germany

University of Illinois at Chicago Chicago USA

University of Ioánnina Ioannina Greece

University of Maryland College Park USA

University of Minnesota Minneapolis USA

University of Mississippi Oxford USA

University of Nebraska Lincoln Lincoln USA

University of Notre Dame Notre Dame USA

University of Puerto Rico Mayagüez USA

University of Rochester Rochester USA

University of Seoul Seoul Korea

University of Sofia Sofia Bulgaria

University of Split Split Croatia

University of Tennessee Knoxville USA

University of Virginia Charlottesville USA

University of Wisconsin Madison USA

Vanderbilt University Nashville USA

Vilnius University Vilnius Lithuania

Vrije Universiteit Brussel Brussel Belgium

Wayne State University Detroit USA

Wigner Research Centre for Physics Budapest Hungary

Yerevan Physics Institute Yerevan Armenia

Zobrazit více v PubMed

ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). doi:10.1016/j.physletb.2012.08.020. arXiv:1207.7214

CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). doi:10.1016/j.physletb.2012.08.021. arXiv:1207.7235

Glashow SL. Partial-symmetries of weak interactions. Nucl. Phys. 1961;22:579. doi: 10.1016/0029-5582(61)90469-2. DOI

Weinberg S. A model of leptons. Phys. Rev. Lett. 1967;19:1264. doi: 10.1103/PhysRevLett.19.1264. DOI

A. Salam, in Weak and Electromagnetic Interactions. ed. by N. Svartholm. Elementary Particle Physics: Relativistic Groups And Analyticity. Proceedings Of The Eighth Nobel Symposium. Almqvist & Wiskell, Stockholm (1968), p. 367

Englert F, Brout R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 1964;13:321. doi: 10.1103/PhysRevLett.13.321. DOI

Higgs PW. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964;12:132. doi: 10.1016/0031-9163(64)91136-9. DOI

Higgs PW. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964;13:508. doi: 10.1103/PhysRevLett.13.508. DOI

Guralnik GS, Hagen CR, Kibble TWB. Global conservation laws and massless particles. Phys. Rev. Lett. 1964;13:585. doi: 10.1103/PhysRevLett.13.585. DOI

Higgs PW. Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 1966;145:1156. doi: 10.1103/PhysRev.145.1156. DOI

Kibble TWB. Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 1967;155:1554. doi: 10.1103/PhysRev.155.1554. DOI

CMS Collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. Phys. Rev. D 89, 012003 (2014). doi:10.1103/PhysRevD.89.012003. arXiv:1310.3687

CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. JHEP 01, 096 (2014). doi:10.1007/JHEP01(2014)096. arXiv:1312.1129

CMS Collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state. Phys. Rev. D 89, 092007 (2014). doi:10.1103/PhysRevD.89.092007. arXiv:1312.5353

CMS Collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of

CMS Collaboration, Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC. JHEP 05, 145 (2013). doi:10.1007/JHEP05(2013)145. arXiv:1303.0763

CMS Collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs. Phys. Rev. Lett. 110, 081803 (2013). doi:10.1103/PhysRevLett.110.081803. arXiv:1212.6639 PubMed

CMS Collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at

CMS Collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes. Eur. Phys. J. C. (2014, Submitted). arXiv:1404.1344 PubMed PMC

ATLAS Collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys. Lett. B 726, 88 (2013). doi:10.1016/j.physletb.2013.08.010. arXiv:1307.1427

ATLAS Collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120 (2013). doi:10.1016/j.physletb.2013.08.026. arXiv:1307.1432

ATLAS Collaboration, Measurement of the Higgs boson mass from the PubMed

ATLAS Collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at

ATLAS Collaboration, Search for invisible decays of a Higgs Boson produced in association with a

ATLAS Collaboration, Measurement of Higgs boson production in the diphoton decay channel in

Actis S, Passarino G, Sturm C, Uccirati S. NNLO computational techniques: the cases DOI

CMS Collaboration, Search for the standard model Higgs boson decaying into two photons in

CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at

Georgi HM, Glashow SL, Machacek ME, Nanopoulos DV. Higgs Bosons from two-gluon annihilation in proton–proton collisions. Phys. Rev. Lett. 1978;40:692. doi: 10.1103/PhysRevLett.40.692. DOI

Cahn RN, Ellis SD, Kleiss R, Stirling WJ. Transverse momentum signatures for heavy Higgs bosons. Phys. Rev. D. 1987;35:1626. doi: 10.1103/PhysRevD.35.1626. PubMed DOI

Glashow SL, Nanopoulos DV, Yildiz A. Associated production of Higgs bosons and Z particles. Phys. Rev. D. 1978;18:1724. doi: 10.1103/PhysRevD.18.1724. DOI

Raitio R, Wada WW. Higgs-boson production at large transverse momentum in quantum chromodynamics. Phys. Rev. D. 1979;19:941. doi: 10.1103/PhysRevD.19.941. DOI

Kunszt Z. Associated production of heavy Higgs boson with top quarks. Nucl. Phys. B. 1984;247:339. doi: 10.1016/0550-3213(84)90553-4. DOI

CMS Collaboration, Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at

CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004

CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and MET. CMS Phys. Anal. Summary CMS-PAS-PFT-09-001 (2009)

CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Phys. Anal. Summ. CMS-PAS-PFT-10-001 (2010)

Cacciari M, Salam GP, Soyez G. The anti- DOI

CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002

CMS Collaboration, Identification of b-quark jets with the CMS experiment. JINST 8, P04013 (2013). doi:10.1088/1748-0221/8/04/P04013. arXiv:1211.4462

Nucl. Instrum. Meth. A GEANT4—a simulation toolkit. 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8

T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175

CMS Collaboration, Measurement of the underlying event activity at the LHC with

Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. DOI

Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. DOI

Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. DOI

Alioli S, Nason P, Oleari C, Re E. NLO Higgs boson production via gluon fusion matched with shower in POWHEG. JHEP. 2009;04:002. doi: 10.1088/1126-6708/2009/04/002. DOI

Nason P, Oleari C. NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG. JHEP. 2010;02:037. doi: 10.1007/JHEP02(2010)037. DOI

Bozzi G, Catani S, de Florian D, Grazzini M. The DOI

Bozzi G, Catani S, de Florian D, Grazzini M. Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC. Nucl. Phys. B. 2006;737:73. doi: 10.1016/j.nuclphysb.2005.12.022. DOI

de Florian D, Ferrera G, Grazzini M, Tommasini D. Transverse-momentum resummation: Higgs boson production at the tevatron and the LHC. JHEP. 2011;11:064. doi: 10.1007/JHEP11(2011)064. DOI

LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 2. Differential Distributions. CERN Report CERN-2012-002, 2012. doi:10.5170/CERN-2012-002. arXiv:1201.3084

Dixon LJ, Siu MS. Resonance-continuum interference in the diphoton Higgs signal at the LHC. Phys. Rev. Lett. 2003;90:252001. doi: 10.1103/PhysRevLett.90.252001. PubMed DOI

LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. CERN Report CERN-2013-004 (2013). doi:10.5170/CERN-2013-004. arXiv:1307.1347

Gao Y, et al. Spin determination of single-produced resonances at hadron colliders. Phys. Rev. D. 2010;81:075022. doi: 10.1103/PhysRevD.81.075022. DOI

Bolognesi S, et al. On the spin and parity of a single-produced resonance at the LHC. Phys. Rev. D. 2012;86:095031. doi: 10.1103/PhysRevD.86.095031. DOI

Re E. NLO corrections merged with parton showers for Z+2 jets production using the POWHEG method. JHEP. 2012;10:031. doi: 10.1007/JHEP10(2012)031. DOI

Alwall J, et al. MadGraph 5: going beyond. JHEP. 2011;06:128. doi: 10.1007/JHEP06(2011)128. DOI

T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02, 007 (2009). doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622

CMS Collaboration, Measurement of the production cross section for pairs of isolated photons in

CMS Collaboration, Measurement of the differential dijet production cross section in proton–proton collisions at

M. Oreglia, A study of the reactions

Cacciari M, Salam GP. Pileup subtraction using jet areas. Phys. Lett. B. 2008;659:119. doi: 10.1016/j.physletb.2007.09.077. PubMed DOI

CMS Collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at

H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, in TMVA: Toolkit for Multivariate Data Analysis with ROOT. XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) (2007), p. 40. arXiv:physics/0703039

Cahn RN, Dawson S. Production of very massive Higgs bosons. Phys. Lett. B. 1984;136:196. doi: 10.1016/0370-2693(84)91180-8. DOI

Altarelli G, Mele B, Pitolli F. Heavy Higgs production at future colliders. Nucl. Phys. B. 1987;287:205. doi: 10.1016/0550-3213(87)90103-9. DOI

Cacciari M, Salam GP, Soyez G. The catchment area of jets. JHEP. 2008;04:005. doi: 10.1088/1126-6708/2008/04/005. DOI

M. Cacciari, G.P. Salam, G. Soyez, FastJet User Manual (2011). arXiv:1111.6097

CMS Collaboration, Pileup Jet Identification. CMS Phys. Anal. Summ. CMS-PAS-JME-13-005 (2013)

Rainwater DL, Szalapski R, Zeppenfeld D. Probing color singlet exchange in Z + two jet events at the CERN LHC. Phys. Rev. D. 1996;54:6680. doi: 10.1103/PhysRevD.54.6680. PubMed DOI

Stewart IW, Tackmann FJ. Theory uncertainties for Higgs mass and other searches using jet bins. Phys. Rev. D. 2012;85:034011. doi: 10.1103/PhysRevD.85.034011. DOI

CMS Collaboration, Studies of Tracker Material. CMS Phys. Anal. Summ. CMS-PAS-TRK-10-003 (2010)

W. Verkerke, D.P. Kirkby, in The RooFit Toolkit for Data Modeling. Proceedings, 13th International Conference on Computing in High-Enery and Nuclear Physics (CHEP 2003). SLAC-R-636 (2003). arXiv:physics/0306116

ATLAS and CMS Collaborations, LHC Higgs Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011. Technical Report ATL-PHYS-PUB 2011–11, CMS-NOTE-2011/005, CERN (2011)

CMS Collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at

Cowan G, Cranmer K, Gross E, Vitells O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C. 2011;71:1. doi: 10.1140/epjc/s10052-011-1554-0. DOI

L. Moneta, in 13

P.D. Dauncey, M. Kenzie, N. Wardle, G.J. Davies, Handling uncertainties in background shapes: the discrete profiling method (2014, To be submitted). arXiv:1408.6865

Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716. doi: 10.1109/TAC.1974.1100705. DOI

E.W. Weisstein, F-distribution (2014). From MathWorld—a Wolfram web resource

F. Garwood, Fiducial limits for the Poisson distribution. Biometrika 28, 437 (1936)

LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables. CERN Report CERN-2011-002 (2011). doi:10.5170/CERN-2011-002. arXiv:1101.0593

CMS Collaboration, Absolute calibration of the luminosity measurement at CMS: Winter 2012 update. CMS Phys. Anal. Summ. CMS-PAS-SMP-12-008 (2012)

CMS Collaboration, CMS luminosity based on pixel cluster counting—Summer 2013 update. CMS Phys. Anal. Summ. CMS-PAS-LUM-13-001 (2013)

R. Paramatti, CMS ECAL group, Crystal properties in the electromagnetic calorimeter of CMS. AIP Conf. Proc. 867, 245 (2006). doi:10.1063/1.2396960

Auffray E. Overview of the 63000 PWO barrel crystals for CMS ECAL production. IEEE Trans. Nucl. Sci. 2008;55:1314. doi: 10.1109/TNS.2007.913935. DOI

Seltzer SM, Berger MJ. Transmission and reflection of electrons by foils. Nucl. Instrum. Meth. 1974;119:157. doi: 10.1016/0029-554X(74)90747-2. DOI

Gross E, Vitells O. Trial factors for the look elsewhere effect in high energy physics. Eur. Phys. J. C. 2010;70:525. doi: 10.1140/epjc/s10052-010-1470-8. DOI

B. Efron, Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1 (1979). doi:10.1214/aos/1176344552. See “Remark K”

Lee SMS, Young GA. Parametric bootstrapping with nuisance parameters. Stat. Prob. Lett. 2005;71:143. doi: 10.1016/j.spl.2004.10.026. DOI

Barlow R. Event classification using weighting methods. J. Comp. Phys. 1987;72:202. doi: 10.1016/0021-9991(87)90078-7. DOI

Martin SP. Shift in the LHC Higgs diphoton mass peak from interference with background. Phys. Rev. D. 2012;86:073016. doi: 10.1103/PhysRevD.86.073016. DOI

Dixon LJ, Li Y. Bounding the Higgs Boson width through interferometry. Phys. Rev. Lett. 2013;111:111802. doi: 10.1103/PhysRevLett.111.111802. PubMed DOI

Junk T. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth. A. 1999;434:435. doi: 10.1016/S0168-9002(99)00498-2. DOI

Read AL. Presentation of search results: the DOI

Branco GC, et al. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012;516:1. doi: 10.1016/j.physrep.2012.02.002. DOI

Landau LD. On the angular momentum of a two-photon system. Dokl. Akad. Nauk Ser. Fiz. 1948;60:207.

Yang CN. Selection rules for the dematerialization of a particle into two photons. Phys. Rev. 1950;77:242. doi: 10.1103/PhysRev.77.242. DOI

Collins JC, Soper DE. Angular distribution of dileptons in high-energy hadron collisions. Phys. Rev. D. 1977;16:2219. doi: 10.1103/PhysRevD.16.2219. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...