Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25849117
PubMed Central
PMC4388629
DOI
10.1371/journal.pcbi.1004061
PII: PCOMPBIOL-D-14-00786
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- chemické modely * MeSH
- glykosylace MeSH
- glykosyltransferasy chemie ultrastruktura MeSH
- katalýza MeSH
- kinetika MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- počítačová simulace MeSH
- polysacharidy chemie ultrastruktura MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykosyltransferasy MeSH
- polysacharidy MeSH
The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.
Zobrazit více v PubMed
Sears P, Wong CH (1998) Enzyme action in glycoprotein synthesis. Cell Mol Life Sci 54: 223–252. 10.1007/s000180050146 PubMed DOI PMC
Solá RJ, Rodríguez-Martínez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol Life Sci 64: 2133–2152. 10.1007/s00018-007-6551-y PubMed DOI PMC
Rudd PM, Wormald MR, Dwek RA (2004) Sugar-mediated ligand–receptor interactions in the immune system. Trends Biotechnol 22: 524–530. 10.1016/j.tibtech.2004.07.012 PubMed DOI
Tvaroška I (2006) Molecular modeling of retaining glycosyltransferases. In: NMR Spectroscopy and Computer Modeling of Carbohydrates, American Chemical Society, volume 930 of ACS Symposium Series pp. 285–301. URL 10.1021/bk-2006-0930.ch016. DOI
Lairson L, Henrissat B, Davies G, Withers S (2008) Glycosyltransferases: Structures, functions, and mechanisms. Annu Rev Biochem 77: 521–555. 10.1146/annurev.biochem.76.061005.092322 PubMed DOI
Monegal A, Planas A (2006) Chemical rescue of α-galactosyltransferase. implications in the mechanism of retaining glycosyltransferases. J Am Chem Soc 128: 16030–16031. 10.1021/ja0659931 PubMed DOI
Soya N, Fang Y, Palcic MM, Klassen JS (2011) Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases. Glycobiology 21: 547–552. 10.1093/glycob/cwq190 PubMed DOI
André I, Tvaroška I, Carver JP (2003) On the reaction pathways and determination of transition-state structures for retaining α-galactosyltransferases. Carbohydr Res 338: 865–877. 10.1016/S0008-6215(03)00050-8 PubMed DOI
Gómez H, Lluch JM, Masgrau L (2012) Essential role of glutamate 317 in galactosyl transfer by α3GalT: a computational study. Carbohydr Res 356: 204–208. 10.1016/j.carres.2012.03.027 PubMed DOI
Gómez H, Polyak I, Thiel W, Lluch JM, Masgrau L (2012) Retaining glycosyltransferase mechanism studied by QM/MM methods: Lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state. J Am Chem Soc 134: 4743–4752. 10.1021/ja210490f PubMed DOI
Rojas-Cervellera V, Ardèvol A, Boero M, Planas A, Rovira C (2013) Formation of a covalent glycosyl–enzyme species in a retaining glycosyltransferase. Chem—Eur J 19: 14018–14023. 10.1002/chem.201302898 PubMed DOI
Lee SS, Hong SY, Errey JC, Izumi A, Davies GJ, et al. (2011) Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Nat Chem Biol 7: 631–638. 10.1038/nchembio.628 PubMed DOI
Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG, et al. (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Mol Biol 8: 166–175. 10.1038/84168 PubMed DOI
Tvaroška I (2004) Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Carbohydr Res 339: 1007–1014. 10.1016/j.carres.2003.11.014 PubMed DOI
Errey JC, Lee SS, Gibson RP, Martinez Fleites C, Barry CS, et al. (2010) Mechanistic insight into enzymatic glycosyl transfer with retention of conguration through analysis of glycomimetic inhibitors. Angew Chem, Int Ed 49: 1234–1237. 10.1002/anie.200905096 PubMed DOI
Ardèvol A, Rovira C (2011) The molecular mechanism of enzymatic glycosyl transfer with retention of conguration: Evidence for a short-lived oxocarbenium-like species. Angew Chem, Int Ed 50: 10897–10901. 10.1002/anie.201104623 PubMed DOI
Gómez H, Rojas R, Patel D, Tabak LA, Lluch JM, et al. (2014) A computational and experimental study of O-glycosylation. catalysis by human UDP-GalNAc polypeptide:GalNAc transferase-T2. Org Biomol Chem 12: 2645–2655. 10.1039/c3ob42569j PubMed DOI PMC
White T, Bennett EP, Takio K, Sørensen T, Bonding N, et al. (1995) Purification and cDNA cloning of a human UDP-N-acetyl-α- d-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 270: 24156–24165. 10.1074/jbc.270.41.24156 PubMed DOI
Hagen KGT, Fritz TA, Tabak LA (2003) All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13: 1R–16R. 10.1093/glycob/cwg007 PubMed DOI
Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21: 149–158. 10.1016/j.tcb.2010.11.004 PubMed DOI
Fritz TA, Raman J, Tabak LA (2006) Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferase-2. J Biol Chem 281: 8613–8619. 10.1074/jbc.M513590200 PubMed DOI
Kubota T, Shiba T, Sugioka S, Furukawa S, Sawaki H, et al. (2006) Structural basis of carbohydrate transfer activity by human UDP-GalNAc: Polypeptide α-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J Mol Biol 359: 708–727. 10.1016/j.jmb.2006.03.061 PubMed DOI
Tenno M, Kézdy FJ, Elhammer ÅP, Kurosaka A (2002) Function of the lectin domain of polypeptide N-acetylgalactosaminyltransferase 1. Biochem Biophys Res Commun 298: 755–759. 10.1016/S0006-291X(02)02549-4 PubMed DOI
Hagen FK, Hazes B, Raffo R, deSa D, Tabak LA (1999) Structure-function analysis of the UDPN-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 274: 6797–6803. 10.1074/jbc.274.10.6797 PubMed DOI
Stwora-Wojczyk MM, Kissinger JC, Spitalnik SL, Wojczyk BS (2004) O-glycosylation in toxoplasma gondii: Identification and analysis of a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Int J Parasitol 34: 309–322. 10.1016/j.ijpara.2003.11.016 PubMed DOI
Trzaskowski B, Les A, Adamowicz L (2003) Modelling of octahedral manganese II complexes with inorganic ligands: A problem with spin-states. Int J Mol Sci 4: 503–511. 10.3390/i4080503 DOI
Kóna J, Tvaroška I (2009) Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates. Chem Pap 63: 598–607.
Freire T, Fernandez C, Chalar C, Maizels RM, Alzari P, et al. (2004) Characterization of a UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase with an unusual lectin domain from the platyhelminth parasite Echinococcus granulosus. Biochem J 382: 501–510. 10.1042/BJ20031877 PubMed DOI PMC
Van Lenthe E, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24: 1142–1156. 10.1002/jcc.10255 PubMed DOI
Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110: 5029–5036. 10.1063/1.478401 PubMed DOI
Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110: 6158–6170. 10.1063/1.478522 DOI
Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120: 215–241.
Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41: 157–167. 10.1021/ar700111a PubMed DOI
Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098–3100. 10.1103/PhysRevA.38.3098 PubMed DOI
Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33: 8822–8824. 10.1103/PhysRevB.33.8822 PubMed DOI
Lira-Navarrete E, Iglesias-Fernández J, Zandberg WF, Compañón I, Kong Y, et al. (2014) Substrate-guided front-face reaction revealed by combined structural snapshots and metadynamics for the polypeptide N-acetylgalactosaminyltransferase 2. Angew Chem Int Ed: 8206–8210. 10.1002/anie.201402781 PubMed DOI
Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, et al. (2013) ADF2013. Amsterdam, The Netherlands: SCM, Theoretical Chemistry, Vrije Universiteit.
Walker RC, Crowley MF, Case DA (2008) The implementation of a fast and accurate QM/MM potential method in Amber. J Comput Chem 29: 1019–1031. 10.1002/jcc.20857 PubMed DOI
Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. parameterization and validation. J Comput Chem 23: 1623–1641. 10.1002/jcc.10128 PubMed DOI
te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, et al. (2001) Chemistry with ADF. J Comput Chem 22: 931–967. 10.1002/jcc.1056 DOI
Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99: 391–403. 10.1007/s002140050353 DOI
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117: 5179–5197. 10.1021/ja00124a002 DOI
Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, et al. (2008) GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J Comput Chem 29: 622–655. 10.1002/jcc.20820 PubMed DOI PMC
Swart M (2003) AddRemove: A new link model for use in QM/MM studies. Int J Quantum Chem 91: 177–183. 10.1002/qua.10463 DOI
Swart M, van Duijnen PT, Snijders JG (2001) A charge analysis derived from an atomic multipole expansion. J Comput Chem 22: 79–88. 10.1002/1096-987X(20010115)22:1%3C79::AID-JCC8%3E3.0.CO;2-B DOI
Handy NC, Cohen AJ (2001) Left-right correlation energy. Mol Phys 99: 403–412. 10.1080/00268970010018431 DOI
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: 3865–3868. 10.1103/PhysRevLett.77.3865 PubMed DOI
Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)]. Phys Rev Lett 78: 1396–1396. 10.1103/PhysRevLett.78.1396 PubMed DOI
Swart M, Solà M, Bickelhaupt FM (2007) Energy landscapes of nucleophilic substitution reactions: A comparison of density functional theory and coupled cluster methods. J Comput Chem 28: 1551–1560. 10.1002/jcc.20653 PubMed DOI
Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132: 154104 10.1063/1.3382344 PubMed DOI
Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13: 6670–6688. 10.1039/c0cp02984j PubMed DOI
Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88: 2547–2553. 10.1063/1.454033 DOI
Franchini M, Philipsen PHT, Visscher L (2013) The Becke fuzzy cells integration scheme in the Amsterdam Density Functional program suite. J Comput Chem 34: 1819–1827. 10.1002/jcc.23323 PubMed DOI
te Velde G, Baerends E (1992) Numerical integration for polyatomic systems. J Comput Phys 99: 84–98. 10.1016/0021-9991(92)90277-6 DOI
Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6: 525–533. 10.1016/S0893-6080(05)80056-5 DOI
Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions In: Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific Publishing Co. Pte. Ltd, pp. 385–404. URL http://www.worldscientific.com/doi/abs/10.1142/9789812839664_0016. DOI
Henkelman G, Jópnsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113: 9978–9985. 10.1063/1.1329672 DOI
Bahn S, Jacobsen K (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4: 56–66. 10.1109/5992.998641 DOI
Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P (2006) Structural relaxation made simple. Phys Rev Lett 97: 170201 10.1103/PhysRevLett.97.170201 PubMed DOI
Bohner MU, Meisner J, Kästner J (2013) A quadratically-converging nudged elastic band optimizer. J Chem Theory Comput 9: 3498–3504. 10.1021/ct400323z PubMed DOI
Bofill JM (1994) Updated hessian matrix and the restricted step method for locating transition structures. J Comput Chem 15: 1–11. 10.1002/jcc.540150102 DOI
Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97: 1354–1358. 10.1021/ja00839a011 DOI
Hill AD, Reilly PJ (2007) Puckering coordinates of monocyclic rings by triangular decomposition. J Chem Inf Model 47: 1031–1035. 10.1021/ci600492e PubMed DOI
Tenno M, Toba S, Kézdy FJ, Elhammer ÅP, Kurosaka A (2002) Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-t1). Eur J Biochem 269: 4308–4316. 10.1046/j.1432-1033.2002.03123.x PubMed DOI
Tenno M, Saeki A, Elhammer ÅP, Kurosaka A (2007) Function of conserved aromatic residues in the Gal/GalNAc-glycosyltransferase motif of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1. FEBS J 274: 6037–6045. 10.1111/j.1742-4658.2007.06124.x PubMed DOI
Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review