Molecular and biochemical characterizations of a new low-temperature active mannanase

. 2015 Nov ; 60 (6) : 483-92. [epub] 20150414

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25868895
Odkazy

PubMed 25868895
DOI 10.1007/s12223-015-0391-1
PII: 10.1007/s12223-015-0391-1
Knihovny.cz E-zdroje

A mannanase-coding gene was cloned from Sphingobacterium sp. GN25 isolated from the feces of Grus nigricollis. The gene encodes a 371-residue polypeptide (ManAGN25) showing less than 74 % identity with a number of hypothetical proteins and putative glucanases and mannanases. Before experiment's performance, ManAGN25 was predicted to be a low-temperature active mannanase based on the molecular characterization, including (1) ManAGN25 shared the highest identity of 41.1 % with the experimentally verified low-temperature active mannanase (ManAJB13) from Sphingomonas sp. JB13; (2) compared with their mesophilic and thermophilic counterparts, ManAGN25 and ManAJB13 had increased number of amino acid residues around their catalytic sites; (3) these increased number of amino acid residues built longer loops, more α-helices, and larger total accessible surface area and packing volume. Then the experiments of biochemical characterization verified that the purified recombinant ManAGN25 is a low-temperature active mannanase: the enzyme showed apparently optimal activity at 35-40 °C and retained 78.2, 44.8, and 15.0 % of its maximum activity when assayed at 30, 20, and 10 °C, respectively; the half-life of the enzyme was approximately 60 min at 37 °C; the enzyme presented a K m of 4.2 mg/ml and a k cat of 0.4/s in McIlvaine buffer (pH 7.0) at 35 °C using locust bean gum as the substrate; and the activation energy for hydrolysis of locust bean gum by the enzyme was 36.0 kJ/mol. This study is the first to report the molecular and biochemical characterizations of a mannanase from a strain.

Zobrazit více v PubMed

Crit Rev Biotechnol. 2016;36(1):32-42 PubMed

J Biol Chem. 2001 Aug 17;276(33):31186-92 PubMed

Appl Environ Microbiol. 2008 Mar;74(6):1677-86 PubMed

Nucleic Acids Res. 2003 Jul 1;31(13):3316-9 PubMed

J Microbiol. 2011 Feb;49(1):86-93 PubMed

Appl Microbiol Biotechnol. 2014 Mar;98(5):2155-63 PubMed

Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 PubMed

Curr Microbiol. 1999 Dec;39(6):351-0357 PubMed

J Ind Microbiol Biotechnol. 2012 Apr;39(4):547-55 PubMed

J Comput Aided Mol Des. 2014 Jun;28(6):685-98 PubMed

J Microbiol Biotechnol. 2010 Mar;20(3):518-24 PubMed

J Comput Chem. 2004 Oct;25(13):1605-12 PubMed

Microb Cell Fact. 2010 Apr 11;9:20 PubMed

Adv Protein Chem Struct Biol. 2012;87:181-218 PubMed

Extremophiles. 2002 Apr;6(2):143-50 PubMed

Annu Rev Biochem. 2006;75:403-33 PubMed

Appl Biochem Biotechnol. 2010 Mar;160(5):1277-92 PubMed

Science. 2008 Jun 20;320(5883):1647-51 PubMed

Crit Rev Biotechnol. 2007 Oct-Dec;27(4):197-216 PubMed

J Biosci Bioeng. 2012 May;113(5):568-74 PubMed

Appl Microbiol Biotechnol. 2000 Jun;53(6):715-21 PubMed

Microb Biotechnol. 2011 Jul;4(4):449-60 PubMed

Bioresour Technol. 2011 Feb;102(3):3330-6 PubMed

J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed

Enzyme Microb Technol. 2011 Apr 7;48(4-5):365-70 PubMed

Appl Microbiol Biotechnol. 2013 Sep;97(18):8121-8 PubMed

J Agric Food Chem. 2013 Jan 16;61(2):394-401 PubMed

Nat Rev Microbiol. 2003 Dec;1(3):200-8 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Appl Microbiol Biotechnol. 2012 Mar;93(5):1817-30 PubMed

Mol Gen Mikrobiol Virusol. 2012;(4):14-7 PubMed

Nature. 2007 Nov 22;450(7169):560-5 PubMed

J Agric Food Chem. 2013 Dec 18;61(50):12333-44 PubMed

Zobrazit více v PubMed

GENBANK
JQ863107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...