Time-Resolved Fluorescence Anisotropy of Bicyclo[1.1.1]pentane/Tolane-Based Molecular Rods Included in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25937858
PubMed Central
PMC4415047
DOI
10.1021/acs.jpcc.5b01960
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We examine the fluorescence anisotropy of rod-shaped guests held inside the channels of tris(o-phenylenedioxy)cyclotriphosphazene (TPP) host nanocrystals, characterized by powder X-ray diffraction and solid state NMR spectroscopy. We address two issues: (i) are light polarization measurements on an aqueous colloidal solution of TPP nanocrystals meaningful, or is depolarization by scattering excessive? (ii) Can measurements of the rotational mobility of the included guests be performed at low enough loading levels to suppress depolarization by intercrystallite energy transfer? We find that meaningful measurements are possible and demonstrate that the long axis of molecular rods included in TPP channels performs negligible vibrational motion.
Zobrazit více v PubMed
Kottas G. S.; Clarke L. I.; Horinek D.; Michl J. Artificial Molecular Rotors. Chem. Rev. 2005, 105, 1281–1376. PubMed
Khuong T.-A. V.; Nuñez J. E.; Godinez C. E.; Garcia-Garibay M. A. Crystalline Molecular Machines: A Quest Toward Solid-State Dynamics and Function. Acc. Chem. Res. 2006, 39, 413–422. PubMed
Horansky R. D.; Magnera T. F.; Price J. C.; Michl J.. Artificial Dipolar Molecular Rotors. In Controlled Nanoscale Motion, Lecture Notes in Physics, Vol. 711; Linke H.; Månsson A., Eds.; Springer: Berlin, 2007; pp 303–330.
Crowley J. D.; Kay E. R.; Leigh D. A.. Chemically Driven Artificial Molecular Machines. In Intelligent Materials; Shahinpoor M.; Schneider H.-J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2008; pp 1–47.
Garcia-Garibay M. A. Molecular Machines: Nanoscale Gadgets. Nat. Mater. 2008, 7, 431–432. PubMed
Michl J.; Sykes E. C. H. Molecular Rotors and Motors: Recent Advances and Future Challenges. ACS Nano 2009, 3, 1042–1048. PubMed
Augulis R.; Klok M.; Feringa B. L.; van Loosdrecht P. H. M. Light-Driven Rotary Molecular Motors: An Ultrafast Optical Study. Phys. Status Solidi C 2009, 6, 181–184.
Xue M.; Wang K. L. Molecular Rotors as Switches. Sensors 2012, 12, 11612–11637.
Lensen D.; Elemans J. A. A. W. Artificial Molecular Rotors and Motors on Surfaces: STM Reveals and Triggers. Soft Matter 2012, 8, 9053–9063.
Rozenbaum V. M.; Ogenko V. M.; Chuiko A. A. Vibrational and Orientational States of Surface Atomic Groups. Sov. Phys. Usp. 1991, 34, 883–902.
Gimzewski J. K.; Joachim C.; Schlittler R. R.; Langlais V.; Tang H.; Johannsen I. Rotation of a Single Molecule Within a Supramolecular Bearing. Science 1998, 281, 531–533. PubMed
Zheng X.; Mulcahy M. E.; Horinek D.; Galeotti F.; Magnera T. F.; Michl J. Dipolar and Non-Polar Altitudinal Molecular Rotors Mounted on a Au(111) Surface. J. Am. Chem. Soc. 2004, 126, 4540–4542. PubMed
Tierney H. L.; Murphy C. J.; Jewell A. D.; Baber A. E.; Iski E. V.; Khodaverdian H. Y.; McGuire A. F.; Klebanov N.; Sykes E. C. H. Experimental Demonstration of a Single-Molecule Electric Motor. Nat. Nanotechnol. 2011, 6, 625–629. PubMed
Clarke L. I.; Horinek D.; Kottas G. S.; Varaksa N.; Magnera T. F.; Hinderer T. P.; Horansky R. D.; Michl J.; Price J. C. Dielectric Response of Chloromethylsilyl and Dichloromethylsilyl Dipolar Rotors on Fused Silica Surfaces. Nanotechnology 2002, 13, 533–540.
Winston E. B.; Lowell P. J.; Vacek J.; Chocholoušová J.; Michl J.; Price J. C. Dipolar Molecular Rotors in the Metal-Organic Framework Crystal IRMOF-2. Phys. Chem. Chem. Phys. 2008, 10, 5188–5191. PubMed
Horansky R. D.; Clarke L. I.; Price J. C.; Khuong T-A. V.; Jarowski P. D.; Garcia- Garibay M. A. Dielectric Response of a Dipolar Molecular Rotor Crystal. Phys. Rev. B 2005, 72, 014302-1–014302-5.
Kobr L.; Zhao K.; Shen Y.; Comotti A.; Bracco S.; Shoemaker R. K.; Sozzani P.; Clark N. A.; Price J. C.; Rogers C. T.; Michl J. Inclusion Compound Based Approach to Arrays of Artificial Dipolar Molecular Rotors. A Surface Inclusion. J. Am. Chem. Soc. 2012, 134, 10122–10131. PubMed
Kobr L.; Zhao K.; Shen Y.; Polivkova K.; Shoemaker R. K.; Clark N. A.; Price J. C.; Rogers C. T.; Michl J. Inclusion Compound Based Approach to Arrays of Artificial Dipolar Molecular Rotors. Bulk Inclusions. J. Org. Chem. 2013, 78, 1768–1777. PubMed
Kobr L.; Zhao K.; Shen Y.; Shoemaker R. K.; Rogers C. T.; Michl J. Inclusion Compound Based Approach to Forming Arrays of Artificial Dipolar Molecular Rotors. A Search for Optimal Rotor Structures. Adv. Mater. 2013, 25, 443–448. PubMed
Kobr L.; Zhao K.; Shen Y.; Shoemaker R. K.; Rogers C. T.; Michl J. Tris-o-phenylenedioxycyclophosphazene (TPP) Inclusion Compounds Containing A Dipolar Molecular Rotor. Cryst. Growth Des. 2014, 14, 559–568.
Zhao K.; Dron P. I.; Kaleta J.; Rogers C. T.; Michl J.. Arrays of Dipolar Molecular Rotors in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP). In Topics in Current Chemistry: Molecular Machines and Motors: Recent Advances and Perspectives, Vol 354; Credi A.; Silvi S.; Venturi M., Eds.; Springer: Switzerland, 2014; pp 163–211. PubMed
Comotti A.; Simonutti R.; Stramare S.; Sozzani P. 13C and 31P MAS NMR Investigations of Spirocyclotriphosphazene Nanotubes. Nanotechnology 1999, 10, 70–76.
Brustolon M.; Barbon A.; Bortolus M.; Maniero A. L.; Sozzani P.; Comotti A.; Simonutti R. Dynamics of Alkoxy-Oligothiophene Ground and Excited States in Nanochannels. J. Am. Chem. Soc. 2004, 126, 15512–15519. PubMed
Hadar I.; Hitin G. B.; Sitt A.; Faust A.; Banin U. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble. J. Phys. Chem. Lett. 2013, 4, 502–507. PubMed
Tice D. B.; Weinberg D. J.; Mathew N.; Chang R. P. H.; Weiss E. A. Measurement of Wavelength-Dependent Polarization Character in the Absorption Anisotropies of Ensembles of CdSe Nanorods. J. Phys. Chem. C 2013, 117, 13289–13296.
Kuzmanich G.; Xue J.; Netto-Ferreira J.-C.; Scaiano J. C.; Platz M.; Garcia-Garibay M. A. Steady State and Transient Kinetics in Crystalline Solids: The Photochemistry of Nanocrystalline 1,1,3-triphenyl-3-hydroxy-2-indanone. Chem. Sci. 2011, 2, 1497–1501.
Schwab P.; Noll B. C.; Michl J. Synthesis and Structure of Trigonal and Tetragonal Connectors for a ‘Tinkertoy’ Construction Set. J. Org. Chem. 2002, 67, 5476–5485. PubMed
Kaleta J.; Mazal C. A Triangular Macrocycle Altering Planar and Bulky Sections in Its Molecular Backbone. Org. Lett. 2011, 13, 1326–1329. PubMed
Kaleta J.; Necas M.; Mazal C. 1,3-Diethynylbicyclo[1.1.1]pentane, a Useful Molecular Building Block. Eur. J. Org. Chem. 2012, 25, 4783–4796.
Frahn J.; Schlüter A.-D. Functionalized AB-Type Monomers for Suzuki Polycondensation. Synthesis 1997, 11, 1301–1304.
Comotti A.; Bracco S.; Ferretti L.; Mauri M.; Simonutti R.; Sozzani P. A Single-Crystal Imprints Macroscopic Orientation on Xenon Atoms. Chem. Commun. 2007, 350–352. PubMed
Montalti M.; Credi A.; Prodi L.; Gandolfi M. T.. Handbook of Photochemistry, 3rd ed.; Taylor and Francis Group: Boca Raton, 2006.
Berlman I. B.Handbook of Fluorescence Spectra of Aromatic Molecules; Academic Press: New York, 1971.
Kawski A.; Piszczek G.; Kubicki A. Fluorescence Properties of p-Quaterphenyl and p-Quinquephenyl Derivatives in Liquid Solvents. Z. Naturforsch., A: Phys. Sci. 1996, 51, 905–909.
Nijegorodov N. I.; Downey W. S.; Danailov M. B. Systematic Investigation of Absorption, Fluorescence and Laser Properties of Some p- and m-oligophenylenes. Spectrochim. Acta, Part A 2000, 56, 783–795. PubMed
Allcock H. R.; Levin M. L.; Whittle R. R. Tris(o-phenylenedioxy)cyclotriphosphazene: The Clathration-Induced Monoclinic to Hexagonal Solid-state Transition. Inorg. Chem. 1986, 25, 41–47.
Sozzani P.; Comotti A.; Bracco S.; Simonutti R. A Novel Family of Supramolecular Frameworks of Polyconjugated Molecules Hosted in Aromatic Nanochannels. Angew. Chem., Int. Ed. 2004, 43, 2792–2797. PubMed
Sozzani P.; Bracci S.; Comotti A.; Ferretti L.; Simonutti R. Methane and Carbon Dioxide Storage in a Porous van der Waals Crystal. Angew. Chem., Int. Ed. 2005, 44, 1816–1820. PubMed
Uchida K.; Karei T.; Takahashi Y. Influence of Molecular Geometry on the Absorption Spectra of p-quaterphenyl Crystals and Phase Transition. J. Lumin. 1997, 72–74, 501–502.
Thulstrup E. W.; Michl J. Orientation and Linear Dichroism of Symmetrical Aromatic Molecules Imbedded in Stretched Polyethylene. J. Am. Chem. Soc. 1982, 104, 5594–5604.
Coulson C. A. Exited Electronic Levels in Conjugated Molecules. Proc. Phys. Soc. 1948, 60, 257–269.
Dale J. Ultraviolet Absorption Spectra of ortho- and para-Linked Polyphenyls. Acta Scand. 1957, 11, 650–659.
Suzuki H.Electronic Absorption Spectra and Geometry of Organic Molecules; Academic Press: New York, 1967.
Razi Naqvi K.; Dontsch J.; Wild U. P. The Influence of Molecular Geometry on the Fluorescence Spectra of Biphenyl and the Polyphenyls. Chem. Phys. Lett. 1975, 34, 285–288.
Langkilde F. W.; Thulstrup E. W.; Michl J. The Effect of Solvent Environment on Molecular Electronic Transition Moment Directions: Symmetry Lowering in Pyrene. J. Chem. Phys. 1983, 78, 3372–3381.
Langkilde F. W.; Gisin M.; Thulstrup E. W.; Michl J. Alignment of Solutes in Stretched Polyethylene. Determination of the Five Second and Fourth Moments of the Orientation Distribution of 2-Fluoropyrene from Polarized Fluorescence. Additional Evidence for the Twisting of Weak Transition Moments by the Solvent Environment. J. Phys. Chem. 1983, 87, 2901–2911.
Lakowicz J. R.Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, 2006.
Ito N.; Esaki H.; Maesawa T.; Imamiya E.; Maegawa T.; Sajiki H. Efficient and Selective Pt/C-Catalyzed H–D Exchange Reaction of Aromatic Rings. Bull. Chem. Soc. Jpn. 2008, 81, 278–286.
Hertzsch T.; Budde F.; Weber E.; Hulliger J. Supramolecular-Wire Confinement of I2 Molecules in Channels of the Organic Zeolite Tris(o-phenylenedioxy)cyclotriphosphazene. Angew. Chem., Int. Ed. 2002, 41, 2281–2284. PubMed
Uchimura M.; Kang S.; Ishige R.; Watanabe J.; Konishi G. Synthesis of Liquid Crystal Molecules Based on Bis(biphenyl)diacetylene and Their Liquid Crystallinity. Chem. Lett. 2010, 39, 513–515.