Cross-linked xenogenic collagen implantation in the sheep model for vaginal surgery

. 2015 ; 12 (2) : 113-122. [epub] 20150205

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25960708

The properties of meshes used in reconstructive surgery affect the host response and biomechanical characteristics of the grafted tissue. Whereas durable synthetics induce a chronic inflammation, biological grafts are usually considered as more biocompatible. The location of implantation is another determinant of the host response: the vagina is a different environment with specific function and anatomy. Herein, we evaluated a cross-linked acellular collagen matrix (ACM), pretreated by the anti-calcification procedure ADAPT® in a sheep model for vaginal surgery. Ten sheep were implanted with a cross-linked ACM, and six controls were implanted with a polypropylene (PP; 56 g/m2) control. One implant was inserted in the lower rectovaginal septum, and one was used for abdominal wall defect reconstruction. Grafts were removed after 180 days; all graft-related complications were recorded, and explants underwent bi-axial tensiometry and contractility testing. Half of ACM-implanted animals had palpable induration in the vaginal implantation area, two of these also on the abdominal implant. One animal had a vaginal exposure. Vaginal ACMs were 63 % less stiff compared to abdominal ACM explants (p = 0.01) but comparable to vaginal PP explants. Seven anterior vaginal ACM explants showed areas of graft degradation on histology. There was no overall difference in vaginal contractility. Considering histologic degradation in the anterior vaginal implant as representative for the host, posterior ACM explants of animals with degradation had a 60 % reduced contractility as compared to PP (p = 0.048). Three abdominal implants showed histologic degradation; those were more compliant than non-degraded implants. Vaginal implantation with ACM was associated with graft-related complications (GRCs) and biomechanical properties comparable to PP. Partially degraded ACM had a decreased vaginal contractility.

Zobrazit více v PubMed

Barber MD, Maher C. Epidemiology and outcome assessment of pelvic organ prolapse. Int Urogynecol J. 2013;24:1783–90. doi: 10.1007/s00192-013-2169-9. PubMed DOI

Milsom I, Altman D, Lapitan MC, et al. (2009) Epidemiology of urinary (UI) and faecal (FI) incontinence and pelvic organ prolapse (POP). 35–112.

Wu JM, Matthews CA, Conover MM, et al. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol. 2014;123:1201–6. doi: 10.1097/AOG.0000000000000286. PubMed DOI PMC

Maher CM, Feiner B, Baessler K, Glazener CMA. Surgical management of pelvic organ prolapse in women: the updated summary version Cochrane review. Int Urogynecol J. 2011;22:1445–57. doi: 10.1007/s00192-011-1542-9. PubMed DOI

Keys T, Campeau L, Badlani G. Synthetic mesh in the surgical repair of pelvic organ prolapse: current status and future directions. Urology. 2012;80:237–43. doi: 10.1016/j.urology.2012.04.008. PubMed DOI

Mangera A, Bullock A, Chapple CR, MacNeil S. Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourol Urodyn. 2012;21:13–21. doi: 10.1002/nau.21156. PubMed DOI

Salomon LJ, Detchev R, Barranger E, et al. Treatment of anterior vaginal wall prolapse with porcine skin collagen implant by the transobturator route: preliminary results. Eur Urol. 2004;45:219–225. doi: 10.1016/j.eururo.2003.09.005. PubMed DOI

Meschia M, Pifarotti P, Bernasconi F, et al. Porcine skin collagen implants to prevent anterior vaginal wall prolapse recurrence: a multicenter, randomized study. J Urol. 2007;177:192–5. doi: 10.1016/j.juro.2006.08.100. PubMed DOI

Botros SM, Sand PK, Beaumont JL, et al. Arcus-anchored acellular dermal graft compared to anterior colporrhaphy for stage II cystoceles and beyond. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20:1265–71. doi: 10.1007/s00192-009-0933-7. PubMed DOI

Mangera A, Bullock AJ, Roman S, et al. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int. 2013;112:674–85. doi: 10.1111/bju.12186. PubMed DOI

Trabuco EC, Klingele CJ, Weaver AL, et al. Medium-term comparison of continence rates after rectus fascia or midurethral sling placement. Am J Obstet Gynecol. 2009;200:300.e1–6. PubMed

Jeon M-J, Jung H-J, Chung S-M, et al. Comparison of the treatment outcome of pubovaginal sling, tension-free vaginal tape, and transobturator tape for stress urinary incontinence with intrinsic sphincter deficiency. Am J Obstet Gynecol. 2008;199:76.e1–4. PubMed

Dunn RM. Cross-linking in biomaterials: a primer for clinicians. Plast Reconstr Surg. 2012;130:18S–26S. doi: 10.1097/PRS.0b013e31825efea6. PubMed DOI

Neethling WML, Glancy R, Hodge AJ. ADAPT-treated porcine valve tissue (cusp and wall) versus Medtronic Freestyle and Prima Plus: crosslink stability and calcification behavior in the subcutaneous rat model. J Heart Valve Dis. 2004;13:689–96. PubMed

Neethling WML, Strange G, Firth L, Smit FE. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: initial experience with the ADAPT-treated CardioCel(R) patch. Interact Cardiovasc Thorac Surg. 2013;17:698–702. doi: 10.1093/icvts/ivt268. PubMed DOI PMC

Neethling WML, Hodge AJ, Clode P, Glancy R. A multi-step approach in anti-calcification of glutaraldehyde-preserved bovine pericardium. J Cardiovasc Surg (Torino) 2006;47:711–8. PubMed

Feola A, Endo M, Urbankova I, et al. Host reaction to vaginally inserted collagen containing polypropylene implants in sheep. Am J Obstet Gynecol. 2014 PubMed

Manodoro S, Endo M, Uvin P, et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG. 2013;120:244–50. doi: 10.1111/1471-0528.12081. PubMed DOI

De Tayrac R, Alves A, Thérin M. Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18:513–20. doi: 10.1007/s00192-006-0176-9. PubMed DOI

Badylak S, Kokini K, Tullius B, et al. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res. 2002;103:190–202. doi: 10.1006/jsre.2001.6349. PubMed DOI

Zheng F, Lin Y, Verbeken E, et al. Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol. 2004;191:1961–70. doi: 10.1016/j.ajog.2004.01.091. PubMed DOI

Morawietz L, Tiddens O, Mueller M, et al. Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening. Histopathology. 2009;54:847–53. doi: 10.1111/j.1365-2559.2009.03313.x. PubMed DOI

Feola A, Moalli P, Alperin M, et al. Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina. Ann Biomed Eng. 2011;39:549–58. doi: 10.1007/s10439-010-0153-9. PubMed DOI PMC

Claerhout F, De Ridder D, Roovers JP, et al. Medium-term anatomic and functional results of laparoscopic sacrocolpopexy beyond the learning curve. Eur Urol. 2009;55:1459–67. doi: 10.1016/j.eururo.2008.12.008. PubMed DOI

Deprest J, De Ridder D, Roovers J-P, et al. Medium term outcome of laparoscopic sacrocolpopexy with xenografts compared to synthetic grafts. J Urol. 2009;182:2362–8. doi: 10.1016/j.juro.2009.07.043. PubMed DOI

Quiroz LH, Gutman RE, Shippey S, et al. Abdominal sacrocolpopexy: anatomic outcomes and complications with Pelvicol, autologous and synthetic graft materials. Am J Obstet Gynecol. 2008;198:557.e1–5. PubMed

Hviid U, Hviid TVF, Rudnicki M. Porcine skin collagen implants for anterior vaginal wall prolapse: a randomised prospective controlled study. Int Urogynecol J. 2010;21:529–34. doi: 10.1007/s00192-009-1018-3. PubMed DOI

Jorge-Herrero E, Garcia Paez JM, Del Castillo-Olivares Ramos JL. Tissue heart valve mineralization: review of calcification mechanisms and strategies for prevention. J Appl Biomater Biomech. 2005;3:67–82. PubMed

Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79:1072–80. doi: 10.1016/j.athoracsur.2004.06.033. PubMed DOI

Van den Heever JJ, Neethling WML, Smit FE, et al. The effect of different treatment modalities on the calcification potential and cross-linking stability of bovine pericardium. Cell Tissue Bank. 2013;14:53–63. doi: 10.1007/s10561-012-9299-z. PubMed DOI

Neethling WML, Glancy R, Hodge AJ. Mitigation of calcification and cytotoxicity of a glutaraldehyde-preserved bovine pericardial matrix: improved biocompatibility after extended implantation in the subcutaneous rat model. J Heart Valve Dis. 2010;19:778–85. PubMed

Neethling WML, Yadav S, Hodge AJ, Glancy R. Enhanced biostability and biocompatibility of decellularized bovine pericardium, crosslinked with an ultra-low concentration monomeric aldehyde and treated with ADAPT. J Heart Valve Dis. 2008;17:456–63. PubMed

Schoen FJ, Hobson CE. Anatomic analysis of removed prosthetic heart valves: causes of failure of 33 mechanical valves and 58 bioprostheses, 1980 to 1983. Hum Pathol. 1985;16:549–59. doi: 10.1016/S0046-8177(85)80103-9. PubMed DOI

Butany J, Leong SW, Cunningham KS, et al. A 10-year comparison of explanted Hancock-II and Carpentier-Edwards supraannular bioprostheses. Cardiovasc Pathol. 2007;16:4–13. doi: 10.1016/j.carpath.2006.06.003. PubMed DOI

Schoen FJ. Biomaterial-associated infection, neoplasia, and calcification: clinicopathologic features and pathophysiologic concepts. ASAIO Trans. 1987;33:8–18. PubMed

Cunanan C, Cabiling C, Dinh T (2001) Tissue characterization and calcification potential of commercial bioprosthetic heart valves. Ann Thorac Surg 417–421 PubMed

Ozog Y, Konstantinovic M, Zheng F, et al. Porous acellular porcine dermal collagen implants to repair fascial defects in a rat model: biomechanical evaluation up to 180 days. Gynecol Obstet Invest. 2009;68:205–12. doi: 10.1159/000235852. PubMed DOI

Jenkins ED, Melman L, Deeken CR, et al. Biomechanical and histologic evaluation of fenestrated and nonfenestrated biologic mesh in a porcine model of ventral hernia repair. J Am Coll Surg. 2011;212:327–39. doi: 10.1016/j.jamcollsurg.2010.12.006. PubMed DOI PMC

Deeken CR, Melman L, Jenkins ED, et al. Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg. 2011;212:880–8. doi: 10.1016/j.jamcollsurg.2011.01.006. PubMed DOI PMC

Claerhout F, Verbist G, Verbeken E, et al. Fate of collagen-based implants used in pelvic floor surgery: a 2-year follow-up study in a rabbit model. Am J Obstet Gynecol. 2008;198:94.e1–94.e6. PubMed

Pierce LM, Rao A, Baumann SS, et al. Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol. 2009;200:546.e1–8. PubMed

Melman L, Jenkins ED, Hamilton NA, et al. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 2011;15:157–64. doi: 10.1007/s10029-010-0770-0. PubMed DOI PMC

Deprest J, Klosterhalfen B, Schreurs A, et al. Clinicopathological study of patients requiring reintervention after sacrocolpopexy with xenogenic acellular collagen grafts. J Urol. 2010;183:2249–55. doi: 10.1016/j.juro.2010.02.008. PubMed DOI

Pierce LM, Grunlan MA, Hou Y, et al. Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Am J Obstet Gynecol. 2009;200:549.e1–8. PubMed

Abramov Y, Golden B, Sullivan M, et al. Histologic characterization of vaginal vs. abdominal surgical wound healing in a rabbit model. Wound Repair Regen. 2007;15:80–6. doi: 10.1111/j.1524-475X.2006.00188.x. PubMed DOI

Gabriel B, Rubod C, Brieu M. Vagina, abdominal skin, and aponeurosis: do they have similar biomechanical properties? Int Urogynecol J. 2011;22:23–27. doi: 10.1007/s00192-010-1237-7. PubMed DOI

Feola A, Abramowitch S, Jallah Z, et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG. 2013;120:224–32. doi: 10.1111/1471-0528.12077. PubMed DOI PMC

Majima T, Yasuda K, Tsuchida T, et al. Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci. 2003;8:836–41. doi: 10.1007/s00776-003-0707-x. PubMed DOI

Lo IKY, Marchuk L, Majima T, et al. Medial collateral ligament and partial anterior cruciate ligament transection: mRNA changes in uninjured ligaments of the sheep knee. J Orthop Sci. 2003;8:707–13. doi: 10.1007/s00776-003-0695-x. PubMed DOI

Liang R, Zong W, Palcsey S, et al. Impact of prolapse meshes on the metabolism of vaginal extracellular matrix in rhesus macaque. Am J Obstet Gynecol. 2014 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...