Cross-linked xenogenic collagen implantation in the sheep model for vaginal surgery
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25960708
PubMed Central
PMC4417472
DOI
10.1007/s10397-015-0883-7
PII: 883
Knihovny.cz E-zdroje
- Klíčová slova
- Biological graft, Biomechanics, Contractility, Graft-related complication, Prolapse,
- Publikační typ
- časopisecké články MeSH
The properties of meshes used in reconstructive surgery affect the host response and biomechanical characteristics of the grafted tissue. Whereas durable synthetics induce a chronic inflammation, biological grafts are usually considered as more biocompatible. The location of implantation is another determinant of the host response: the vagina is a different environment with specific function and anatomy. Herein, we evaluated a cross-linked acellular collagen matrix (ACM), pretreated by the anti-calcification procedure ADAPT® in a sheep model for vaginal surgery. Ten sheep were implanted with a cross-linked ACM, and six controls were implanted with a polypropylene (PP; 56 g/m2) control. One implant was inserted in the lower rectovaginal septum, and one was used for abdominal wall defect reconstruction. Grafts were removed after 180 days; all graft-related complications were recorded, and explants underwent bi-axial tensiometry and contractility testing. Half of ACM-implanted animals had palpable induration in the vaginal implantation area, two of these also on the abdominal implant. One animal had a vaginal exposure. Vaginal ACMs were 63 % less stiff compared to abdominal ACM explants (p = 0.01) but comparable to vaginal PP explants. Seven anterior vaginal ACM explants showed areas of graft degradation on histology. There was no overall difference in vaginal contractility. Considering histologic degradation in the anterior vaginal implant as representative for the host, posterior ACM explants of animals with degradation had a 60 % reduced contractility as compared to PP (p = 0.048). Three abdominal implants showed histologic degradation; those were more compliant than non-degraded implants. Vaginal implantation with ACM was associated with graft-related complications (GRCs) and biomechanical properties comparable to PP. Partially degraded ACM had a decreased vaginal contractility.
Zobrazit více v PubMed
Barber MD, Maher C. Epidemiology and outcome assessment of pelvic organ prolapse. Int Urogynecol J. 2013;24:1783–90. doi: 10.1007/s00192-013-2169-9. PubMed DOI
Milsom I, Altman D, Lapitan MC, et al. (2009) Epidemiology of urinary (UI) and faecal (FI) incontinence and pelvic organ prolapse (POP). 35–112.
Wu JM, Matthews CA, Conover MM, et al. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol. 2014;123:1201–6. doi: 10.1097/AOG.0000000000000286. PubMed DOI PMC
Maher CM, Feiner B, Baessler K, Glazener CMA. Surgical management of pelvic organ prolapse in women: the updated summary version Cochrane review. Int Urogynecol J. 2011;22:1445–57. doi: 10.1007/s00192-011-1542-9. PubMed DOI
Keys T, Campeau L, Badlani G. Synthetic mesh in the surgical repair of pelvic organ prolapse: current status and future directions. Urology. 2012;80:237–43. doi: 10.1016/j.urology.2012.04.008. PubMed DOI
Mangera A, Bullock A, Chapple CR, MacNeil S. Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourol Urodyn. 2012;21:13–21. doi: 10.1002/nau.21156. PubMed DOI
Salomon LJ, Detchev R, Barranger E, et al. Treatment of anterior vaginal wall prolapse with porcine skin collagen implant by the transobturator route: preliminary results. Eur Urol. 2004;45:219–225. doi: 10.1016/j.eururo.2003.09.005. PubMed DOI
Meschia M, Pifarotti P, Bernasconi F, et al. Porcine skin collagen implants to prevent anterior vaginal wall prolapse recurrence: a multicenter, randomized study. J Urol. 2007;177:192–5. doi: 10.1016/j.juro.2006.08.100. PubMed DOI
Botros SM, Sand PK, Beaumont JL, et al. Arcus-anchored acellular dermal graft compared to anterior colporrhaphy for stage II cystoceles and beyond. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20:1265–71. doi: 10.1007/s00192-009-0933-7. PubMed DOI
Mangera A, Bullock AJ, Roman S, et al. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int. 2013;112:674–85. doi: 10.1111/bju.12186. PubMed DOI
Trabuco EC, Klingele CJ, Weaver AL, et al. Medium-term comparison of continence rates after rectus fascia or midurethral sling placement. Am J Obstet Gynecol. 2009;200:300.e1–6. PubMed
Jeon M-J, Jung H-J, Chung S-M, et al. Comparison of the treatment outcome of pubovaginal sling, tension-free vaginal tape, and transobturator tape for stress urinary incontinence with intrinsic sphincter deficiency. Am J Obstet Gynecol. 2008;199:76.e1–4. PubMed
Dunn RM. Cross-linking in biomaterials: a primer for clinicians. Plast Reconstr Surg. 2012;130:18S–26S. doi: 10.1097/PRS.0b013e31825efea6. PubMed DOI
Neethling WML, Glancy R, Hodge AJ. ADAPT-treated porcine valve tissue (cusp and wall) versus Medtronic Freestyle and Prima Plus: crosslink stability and calcification behavior in the subcutaneous rat model. J Heart Valve Dis. 2004;13:689–96. PubMed
Neethling WML, Strange G, Firth L, Smit FE. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: initial experience with the ADAPT-treated CardioCel(R) patch. Interact Cardiovasc Thorac Surg. 2013;17:698–702. doi: 10.1093/icvts/ivt268. PubMed DOI PMC
Neethling WML, Hodge AJ, Clode P, Glancy R. A multi-step approach in anti-calcification of glutaraldehyde-preserved bovine pericardium. J Cardiovasc Surg (Torino) 2006;47:711–8. PubMed
Feola A, Endo M, Urbankova I, et al. Host reaction to vaginally inserted collagen containing polypropylene implants in sheep. Am J Obstet Gynecol. 2014 PubMed
Manodoro S, Endo M, Uvin P, et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG. 2013;120:244–50. doi: 10.1111/1471-0528.12081. PubMed DOI
De Tayrac R, Alves A, Thérin M. Collagen-coated vs noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18:513–20. doi: 10.1007/s00192-006-0176-9. PubMed DOI
Badylak S, Kokini K, Tullius B, et al. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res. 2002;103:190–202. doi: 10.1006/jsre.2001.6349. PubMed DOI
Zheng F, Lin Y, Verbeken E, et al. Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol. 2004;191:1961–70. doi: 10.1016/j.ajog.2004.01.091. PubMed DOI
Morawietz L, Tiddens O, Mueller M, et al. Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening. Histopathology. 2009;54:847–53. doi: 10.1111/j.1365-2559.2009.03313.x. PubMed DOI
Feola A, Moalli P, Alperin M, et al. Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina. Ann Biomed Eng. 2011;39:549–58. doi: 10.1007/s10439-010-0153-9. PubMed DOI PMC
Claerhout F, De Ridder D, Roovers JP, et al. Medium-term anatomic and functional results of laparoscopic sacrocolpopexy beyond the learning curve. Eur Urol. 2009;55:1459–67. doi: 10.1016/j.eururo.2008.12.008. PubMed DOI
Deprest J, De Ridder D, Roovers J-P, et al. Medium term outcome of laparoscopic sacrocolpopexy with xenografts compared to synthetic grafts. J Urol. 2009;182:2362–8. doi: 10.1016/j.juro.2009.07.043. PubMed DOI
Quiroz LH, Gutman RE, Shippey S, et al. Abdominal sacrocolpopexy: anatomic outcomes and complications with Pelvicol, autologous and synthetic graft materials. Am J Obstet Gynecol. 2008;198:557.e1–5. PubMed
Hviid U, Hviid TVF, Rudnicki M. Porcine skin collagen implants for anterior vaginal wall prolapse: a randomised prospective controlled study. Int Urogynecol J. 2010;21:529–34. doi: 10.1007/s00192-009-1018-3. PubMed DOI
Jorge-Herrero E, Garcia Paez JM, Del Castillo-Olivares Ramos JL. Tissue heart valve mineralization: review of calcification mechanisms and strategies for prevention. J Appl Biomater Biomech. 2005;3:67–82. PubMed
Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79:1072–80. doi: 10.1016/j.athoracsur.2004.06.033. PubMed DOI
Van den Heever JJ, Neethling WML, Smit FE, et al. The effect of different treatment modalities on the calcification potential and cross-linking stability of bovine pericardium. Cell Tissue Bank. 2013;14:53–63. doi: 10.1007/s10561-012-9299-z. PubMed DOI
Neethling WML, Glancy R, Hodge AJ. Mitigation of calcification and cytotoxicity of a glutaraldehyde-preserved bovine pericardial matrix: improved biocompatibility after extended implantation in the subcutaneous rat model. J Heart Valve Dis. 2010;19:778–85. PubMed
Neethling WML, Yadav S, Hodge AJ, Glancy R. Enhanced biostability and biocompatibility of decellularized bovine pericardium, crosslinked with an ultra-low concentration monomeric aldehyde and treated with ADAPT. J Heart Valve Dis. 2008;17:456–63. PubMed
Schoen FJ, Hobson CE. Anatomic analysis of removed prosthetic heart valves: causes of failure of 33 mechanical valves and 58 bioprostheses, 1980 to 1983. Hum Pathol. 1985;16:549–59. doi: 10.1016/S0046-8177(85)80103-9. PubMed DOI
Butany J, Leong SW, Cunningham KS, et al. A 10-year comparison of explanted Hancock-II and Carpentier-Edwards supraannular bioprostheses. Cardiovasc Pathol. 2007;16:4–13. doi: 10.1016/j.carpath.2006.06.003. PubMed DOI
Schoen FJ. Biomaterial-associated infection, neoplasia, and calcification: clinicopathologic features and pathophysiologic concepts. ASAIO Trans. 1987;33:8–18. PubMed
Cunanan C, Cabiling C, Dinh T (2001) Tissue characterization and calcification potential of commercial bioprosthetic heart valves. Ann Thorac Surg 417–421 PubMed
Ozog Y, Konstantinovic M, Zheng F, et al. Porous acellular porcine dermal collagen implants to repair fascial defects in a rat model: biomechanical evaluation up to 180 days. Gynecol Obstet Invest. 2009;68:205–12. doi: 10.1159/000235852. PubMed DOI
Jenkins ED, Melman L, Deeken CR, et al. Biomechanical and histologic evaluation of fenestrated and nonfenestrated biologic mesh in a porcine model of ventral hernia repair. J Am Coll Surg. 2011;212:327–39. doi: 10.1016/j.jamcollsurg.2010.12.006. PubMed DOI PMC
Deeken CR, Melman L, Jenkins ED, et al. Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg. 2011;212:880–8. doi: 10.1016/j.jamcollsurg.2011.01.006. PubMed DOI PMC
Claerhout F, Verbist G, Verbeken E, et al. Fate of collagen-based implants used in pelvic floor surgery: a 2-year follow-up study in a rabbit model. Am J Obstet Gynecol. 2008;198:94.e1–94.e6. PubMed
Pierce LM, Rao A, Baumann SS, et al. Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol. 2009;200:546.e1–8. PubMed
Melman L, Jenkins ED, Hamilton NA, et al. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 2011;15:157–64. doi: 10.1007/s10029-010-0770-0. PubMed DOI PMC
Deprest J, Klosterhalfen B, Schreurs A, et al. Clinicopathological study of patients requiring reintervention after sacrocolpopexy with xenogenic acellular collagen grafts. J Urol. 2010;183:2249–55. doi: 10.1016/j.juro.2010.02.008. PubMed DOI
Pierce LM, Grunlan MA, Hou Y, et al. Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Am J Obstet Gynecol. 2009;200:549.e1–8. PubMed
Abramov Y, Golden B, Sullivan M, et al. Histologic characterization of vaginal vs. abdominal surgical wound healing in a rabbit model. Wound Repair Regen. 2007;15:80–6. doi: 10.1111/j.1524-475X.2006.00188.x. PubMed DOI
Gabriel B, Rubod C, Brieu M. Vagina, abdominal skin, and aponeurosis: do they have similar biomechanical properties? Int Urogynecol J. 2011;22:23–27. doi: 10.1007/s00192-010-1237-7. PubMed DOI
Feola A, Abramowitch S, Jallah Z, et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG. 2013;120:224–32. doi: 10.1111/1471-0528.12077. PubMed DOI PMC
Majima T, Yasuda K, Tsuchida T, et al. Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci. 2003;8:836–41. doi: 10.1007/s00776-003-0707-x. PubMed DOI
Lo IKY, Marchuk L, Majima T, et al. Medial collateral ligament and partial anterior cruciate ligament transection: mRNA changes in uninjured ligaments of the sheep knee. J Orthop Sci. 2003;8:707–13. doi: 10.1007/s00776-003-0695-x. PubMed DOI
Liang R, Zong W, Palcsey S, et al. Impact of prolapse meshes on the metabolism of vaginal extracellular matrix in rhesus macaque. Am J Obstet Gynecol. 2014 PubMed PMC