Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26000025
PubMed Central
PMC4427012
DOI
10.1155/2015/734101
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.
Zobrazit více v PubMed
Darshan S., Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytotherapy Research. 2004;18(5):343–357. doi: 10.1002/ptr.1475. PubMed DOI
Barnes J., Anderson L. A., Phillipson J. D. Herbal Medicines. 3rd. London, UK: Pharmaceutical Press; 2007.
European Medicines Agency. Assessment Report on Euphrasia officinalis L. and Euphrasia rostkoviana Hayne, Herba. London, UK: European Medicines Agency; 2010. (A Report of Committee on Herbal Medicinal Products). http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2011/01/WC500100385.pdf.
Lans C., Turner N., Khan T., Brauer G., Boepple W. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. Journal of Ethnobiology and Ethnomedicine. 2007;3, article 11 doi: 10.1186/1746-4269-3-11. PubMed DOI PMC
Stoss M., Michels C., Peter E., Beutke R., Gorter R. W. Prospective cohort trial of Euphrasia single-dose eye drops in conjunctivitis. Journal of Alternative and Complementary Medicine. 2000;6(6):499–508. doi: 10.1089/acm.2000.6.499. PubMed DOI
Stoffel L., Zimmermann D., Hunkeler R., et al. Euphrasia eye drops in neonates: a pilot project. Schweizerische Zeitschrift fur GanzheitsMedizin. 2007;19(5):254–259. doi: 10.1159/000283798. DOI
Trovato A., Monforte M. T., Forestieri A. M., Pizzimenti F. In vitro anti-mycotic activity of some medicinal plants containing flavonoids. Bollettino Chimico Farmaceutico. 2000;139(5):225–227. PubMed
Teixeira R., Silva L. R. Bioactive compounds and in vitro biological activity of Euphrasia rostkoviana Hayne extracts. Industrial Crops and Products. 2013;50:680–689. doi: 10.1016/j.indcrop.2013.08.035. DOI
Blazics B., Alberti Á., Béni S., Kursinszki L., Tölgyesi L., Kéry Á. Identification and LC-MS-MS determination of acteoside, the main antioxidant compound of Euphrasia rostkoviana, using the isolated target analyte as external standard. Journal of Chromatographic Science. 2011;49(3):203–208. doi: 10.1093/chrsci/49.3.203. DOI
Blazics B., Ludanyi K., Szarka S., Kery A. Investigation of Euphrasia rostkoviana Hayne using GC-MS and LC-MS. Chromatographia. 2008;68(1):S119–S124. doi: 10.1365/s10337-008-0630-6. DOI
Harkiss K. J., Timmins P. Studies in the Scrophulariaceae part VIII1 phytochemical investigation of Euphrasia officinalis . Planta Medica. 1973;23(4):342–347. doi: 10.1055/s-0028-1099453. PubMed DOI
Miladinovic D. L., Ilic B. S., Nikolic D. M., et al. Volatile constituents of Euphrasia stricta . Chemistry of Natural Compounds. 2014;49(6):1146–1147. doi: 10.1007/s10600-014-0845-8. DOI
Adams R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th. Carol Stream, Ill, USA: Allured Publishing Corporation; 2007.
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard. 8th. Wayne, Pa, USA: Clinical and Laboratory Standards Institute; 2009. (CLSI document M7-A8).
Espinel-Ingroff A. V., Pfaller M. A. Susceptibility test methods: yeasts and filamentous fungi. In: Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A., editors. Manual of Clinical Microbiology. 9th. Washington, DC, USA: ASM Press; 2007.
Cos P., Vlietinck A. J., Berghe D. V., Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. Journal of Ethnopharmacology. 2006;106(3):290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Novy P., Kloucek P., Rondevaldova J., Havlik J., Kourimska L., Kokoska L. Thymoquinone vapor significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia. 2014;94:102–107. doi: 10.1016/j.fitote.2014.01.024. PubMed DOI
De Rapper S., Kamatou G., Viljoen A., van Vuuren S. The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evidence-based Complementary and Alternative Medicine. 2013;2013:10. doi: 10.1155/2013/852049.852049 PubMed DOI PMC
Bilia A. R., Santomauro F., Sacco C., Bergonzi M. C., Donato R. Essential oil of Artemisia annua L.: an extraordinary component with numerous antimicrobial properties. Evidence-Based Complementary and Alternative Medicine. 2014;2014:7. doi: 10.1155/2014/159819.159819 PubMed DOI PMC
Stringaro A., Vavala E., Colone M., et al. Effects of Mentha suaveolens essential oil alone or in combination with other drugs in Candida albicans . Evidence-Based Complementary and Alternative Medicine. 2014;2014:9. doi: 10.1155/2014/125904.125904 PubMed DOI PMC
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. Wayne, Pa, USA: Clinical and Laboratory Standards Institute; 2009. (CLSI document M100-S19).
El-Sherbeny M. A., Maarouf A. R., Hassan A. H. E., Abdel-Aziz N. I. Design and synthesis of new benzimidazole derivatives as potential antimicrobial agents. Journal of American Science. 2012;8(12):785–798.
Lulekal E., Rondevaldova J., Bernaskova E., et al. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia. Pharmaceutical Biology. 2014;52(5):614–620. doi: 10.3109/13880209.2013.858362. PubMed DOI
Moradali M.-F., Mostafavi H., Ghods S., Hejaroude G. A. Investigation of antimicrobial fatty acids from medicinal artist conk mushroom Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) by TLC and spectroscopic detection. International Journal of Medicinal Mushrooms. 2008;10(2):149–154. doi: 10.1615/intjmedmushr.v10.i2.50. DOI
Zhang H., Zhang L., Peng L.-J., et al. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus . Journal of Zhejiang University: Science B. 2012;13(2):83–93. doi: 10.1631/jzus.b1100049. PubMed DOI PMC
Dayrit F. M. The properties of Lauric acid and their significance in coconut oil. Journal of the American Oil Chemists' Society. 2015;92(1):1–15. doi: 10.1007/s11746-014-2562-7. DOI