Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26019154
PubMed Central
PMC4590432
DOI
10.1098/rspb.2014.2630
PII: rspb.2014.2630
Knihovny.cz E-resources
- Keywords
- elevational gradient, macroecology, metabolic theory, microbial biogeography, microbial communities, species richness patterns,
- MeSH
- Bacteria metabolism MeSH
- Ecosystem MeSH
- Microbiota * MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Antarctic Regions MeSH
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.
Department of Biological Sciences Virginia Technological Institute Blacksburg VA USA
Department of Biology University of New Mexico Albuquerque NM USA
Department of Civil and Environmental Engineering Colorado State University Fort Collins CO USA
Department of Ecology Faculty of Science Charles University Prague Czech Republic
See more in PubMed
Hutchinson GE. 1957. Concluding remarks. Cold Springs Harbor Symp. Quant. Biol. 22, 415–427. (10.1101/SQB.1957.022.01.039) DOI
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. (10.1890/03-9000) DOI
Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527. (10.2307/3545569) DOI
Allen AP, Brown JH, Gillooly JF. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548. (10.1126/science.1072380) PubMed DOI
Storch D. 2012. Biodiversity and its energetic and thermal controls. In Metabolic ecology: a scaling approach (eds Sibly RM, Brown JH, Kodric-Brown A.), pp. 120–131. Oxford, UK: Wiley & Sons.
Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR. 2007. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 16, 640–649. (10.1111/j.1466-8238.2007.00316.x) DOI
Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. (10.1038/nature09329) PubMed DOI
Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl Acad. Sci. USA 105, 11 505–11 511. (10.1073/pnas.0801920105) PubMed DOI PMC
Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R. 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92, 797–804. (10.1890/10-1170.1) PubMed DOI
Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J. 2011. Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J. Biogeogr. 38, 595–603. (10.1111/j.1365-2699.2010.02423.x) DOI
Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211. (10.1016/j.soilbio.2012.07.013) DOI
Singh D, Takahashi K, Kim M, Chun J, Adams JM. 2012. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb. Ecol. 63, 429–437. (10.1007/s00248-011-9900-1) PubMed DOI
Treonis A, et al. 2012. Soil nematodes and their prokaryotic prey along an elevation gradient in the Mojave Desert (Death Valley National Park, California, USA). Diversity 4, 363–374. (10.3390/d4040363) DOI
Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631. (10.1073/pnas.0507535103) PubMed DOI PMC
Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH. 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778. (10.1073/pnas.0803070105) PubMed DOI PMC
Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J. 2012. Patterns of elevational beta diversity in micro- and macroorganisms. Glob. Ecol. Biogeogr. 21, 743–750. (10.1111/j.1466-8238.2011.00718.x) DOI
Lozupone CA, Knight R. 2007. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11 436–11 440. (10.1073/pnas.0611525104) PubMed DOI PMC
Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. (10.1128/AEM.00335-09) PubMed DOI PMC
Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL. 2004. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441. (10.1086/381872) PubMed DOI
Corkrey R, Olley J, Ratkowsky D, McMeekin T, Ross T. 2012. Universality of thermodynamic constants governing biological growth rates. PLoS ONE 7, e32003 (10.1371/journal.pone.0032003) PubMed DOI PMC
Eppley RW. 1972. Temperature and phytoplankton growth in the sea. Fish Bull. 70, 1063–1085.
Price PB, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636. (10.1073/pnas.0400522101) PubMed DOI PMC
Angilletta MJ, Jr, Huey RB, Frazier MR. 2009. Thermodynamic effects on organismal performance: is hotter better? Physiol. Biochem. Zool. 83, 197–206. (10.1086/648567) PubMed DOI
Okie JG. 2012. Microorganisms. In Metabolic ecology: a scaling approach (eds Sibly RM, Brown JH, Kodric-Brown A.), pp. 133–153. Oxford, UK: Wiley & Sons.
Frank SA. 2009. The common patterns of nature. J. Evol. Biol. 22, 1563–1585. (10.1111/j.1420-9101.2009.01775.x) PubMed DOI PMC
Harte J. 2011. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford, UK: Oxford University Press.
Harte J, Newman EA. 2014. Maximum information entropy: a foundation for ecological theory. Trends Ecol. Evol. 29, 384–389. (10.1016/j.tree.2014.04.009) PubMed DOI
Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J. Geophys. Res. 107, 4772 (10.1029/2001JD002045) DOI
Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. Int. J. Climatol. 30, 633–642. (10.1002/joc.1933) DOI
Barrett JE, Virginia RA, Wall DH, Parsons AN, Powers LE, Burkins MB. 2004. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118. (10.1890/03-0213) DOI
Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, Zeglin LH, Takacs-Vesbach CD. 2013. Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS ONE 8, e66103 (10.1371/journal.pone.0066103) PubMed DOI PMC
Fountain A, Levy J, Van Horn D, Gooseff MA. 2014. The McMurdo Dry Valleys: a landscape on the threshold of change. Geomorphology 225, 25–35. (10.1016/j.geomorph.2014.03.044) DOI
Dowd SF, Sun Y, Wolcott RD, Domingo A, Carroll JA. 2008. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog. Dis. 5, 459–472. (10.1089/fpd.2008.0107) PubMed DOI
Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.
Ter Braak C, Šmilauer P. 2012. Canoco reference manual and user's guide: software for ordination (v. 5.0). Microcomput. Power.
R Development Core Team. 2011. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Witherow RA, Lyons WB, Bertler NA, Welch KA, Mayewski PA, Sneed SB, Nylen T, Handley MJ, Fountain A. 2006. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: evidence from snow pit analysis. Antarct. Sci. 18, 497–505. (10.1017/S095410200600054X) DOI
Wang Z, Brown JH, Tang Z, Fang J. 2009. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc. Natl Acad. Sci. USA 106, 13 388–13 392. (10.1073/pnas.0905030106) PubMed DOI PMC
Gaston KJ. 2000. Global patterns in biodiversity. Nature 405, 220–227. (10.1038/35012228) PubMed DOI
Wright DH. 1983. Species-energy theory: an extension of species-area theory. Oikos 41, 496–506. (10.2307/3544109) DOI
Kraft NJ, et al. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758. (10.1126/science.1208584) PubMed DOI
Stevens GC. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256. (10.1086/284913) DOI
Telford RJ, Vandvik V, Birks HJB. 2006. Dispersal limitations matter for microbial morphospecies. Science 312, 1015 (10.1126/science.1125669) PubMed DOI
Burkins MB, Virginia RA, Chamberlain CP, Wall DH. 2000. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81, 2377–2391. (10.1890/0012-9658(2000)081[2377:OADOSO]2.0.CO;2) DOI
Sokol ER, Herbold CW, Lee CK, Cary SC, Barrett J. 2013. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4, art136 (10.1890/ES13-00136.1) DOI
Burnside WR, Erhardt EB, Hammond ST, Brown JH. 2014. Rates of biotic interactions scale predictably with temperature despite variation. Oikos 123, 1449–1456. (10.1111/oik.01199) DOI
Bonn A, Storch D, Gaston KJ. 2004. Structure of the species-energy relationship. Proc. R. Soc. Lond. B 271, 1685–1691. (10.1098/rspb.2004.2745) PubMed DOI PMC
Colwell RK, Rangel TF. 2009. Hutchinson's duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19 651–19 658. (10.1073/pnas.0901650106) PubMed DOI PMC