Evolutionary analysis of the female-specific avian W chromosome
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
249976
European Research Council - International
PubMed
26040272
PubMed Central
PMC4468903
DOI
10.1038/ncomms8330
PII: ncomms8330
Knihovny.cz E-resources
- MeSH
- Phylogeny MeSH
- Lizards genetics MeSH
- Chickens genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Evolution, Molecular * MeSH
- Finches genetics MeSH
- Reptiles genetics MeSH
- Sex Chromosomes genetics MeSH
- Birds genetics MeSH
- Struthioniformes genetics MeSH
- Turtles genetics MeSH
- Songbirds genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
The typically repetitive nature of the sex-limited chromosome means that it is often excluded from or poorly covered in genome assemblies, hindering studies of evolutionary and population genomic processes in non-recombining chromosomes. Here, we present a draft assembly of the non-recombining region of the collared flycatcher W chromosome, containing 46 genes without evidence of female-specific functional differentiation. Survival of genes during W chromosome degeneration has been highly non-random and expression data suggest that this can be attributed to selection for maintaining gene dose and ancestral expression levels of essential genes. Re-sequencing of large population samples revealed dramatically reduced levels of within-species diversity and elevated rates of between-species differentiation (lineage sorting), consistent with low effective population size. Concordance between W chromosome and mitochondrial DNA phylogenetic trees demonstrates evolutionary stable matrilineal inheritance of this nuclear-cytonuclear pair of chromosomes. Our results show both commonalities and differences between W chromosome and Y chromosome evolution.
Bird Protection and Study Society of Serbia Radnička 20a 21000 Novi Sad Serbia
Department of Animal Ecology Evolutionary Biology Centre Uppsala University 75236 Uppsala Sweden
Department of Evolutionary Ecology Estación Biológica de Doñana CSIC 41092 Seville Spain
Laboratory of Ornithology Department of Zoology Palacky University 77146 Olomouc Czech Republic
Museo Nacional de Ciencias Naturales CSIC 28006 Madrid Spain
See more in PubMed
Zhou Q. & Bachtrog D. Sex-specific adaptation drives early sex chromosome evolution in Drosophila. Science 337, 341–345 (2012). PubMed PMC
Jobling M. A. & Tyler-Smith C. The human Y chromosome: an evolutionary marker comes of age. Nat. Rev. Genet. 4, 598–612 (2003). PubMed
Semino O. et al.. The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: A Y chromosome perspective. Science 290, 1155–1159 (2000). PubMed
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013). PubMed PMC
Charlesworth B. & Charlesworth D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1563–1572 (2000). PubMed PMC
ICGSC. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004). PubMed
Zhou Q. et al.. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014). PubMed PMC
Solari A. J. & Dresser M. E. High-resolution cytological localization of the XhoI and EcoRI repeat sequences in the pachytene ZW bivalent of the chicken. Chromosome Res. 3, 87–93 (1995). PubMed
Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat. Rev. Genet. 12, 157–166 (2011). PubMed
Lindholm A. & Breden F. Sex chromosomes and sexual selection in poecilliid fishes. Am. Nat. 160, S214–S224 (2002). PubMed
Roldan E. R. S. & Gomendio M. The Y chromosome as a battle ground for sexual selection. Trends Ecol. Evol. 14, 58–62 (1999). PubMed
Saetre G.-P. & Saether S. A. Ecology and genetics of speciation in Ficedula flycatchers. Mol. Ecol. 19, 1091–1106 (2010). PubMed
Skaletsky H. et al.. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003). PubMed
Hughes J. F. et al.. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483, 82–86 (2012). PubMed PMC
Carvalho A. B. Origin and evolution of the Drosophila Y chromosome. Curr. Opin. Genet. Dev. 12, 664–668 (2002). PubMed
Hori T., Asakawa S., Itoh Y., Shimizu N. & Mizuno S. Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol. Biol. Cell 11, 3645–3660 (2000). PubMed PMC
Backström N., Ceplitis H., Berlin S. & Ellegren H. Gene conversion drives the evolution of HINTW, an ampliconic gene on the female-specific avian W chromosome. Mol. Biol. Evol. 22, 1992–1999 (2005). PubMed
Soh Y. Q. S. et al.. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159, 800–813 (2014). PubMed PMC
Itoh Y. et al.. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2 (2007). PubMed PMC
Ellegren H. et al.. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 5, 40 (2007). PubMed PMC
Smeds L. et al.. Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat. Commun. 5, 5448 (2014). PubMed PMC
Uebbing S., Künstner A., Mäkinen H. & Ellegren H. Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol. Evol. 5, 1555–1566 (2013). PubMed PMC
Yazdi H. P. & Ellegren H. Old but not (so) degenerated—slow evolution of largely homomorphic sex chromosomes in ratites. Mol. Biol. Evol. 31, 1444–1453 (2014). PubMed
Ellegren H. The evolutionary genomics of birds. Annu. Rev. Ecol. Evol. Syst. 44, 239–259 (2013).
Wright A. E., Moghadam H. K. & Mank J. E. Trade-off between selection for dosage compensation and masculinization on the avian Z chromosome. Genetics 192, 1433–1445 (2012). PubMed PMC
Ayers K. et al.. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol. 14, R26 (2013). PubMed PMC
Cortez D. et al.. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493 (2014). PubMed
Lawson Handley L., Ceplitis H. & Ellegren H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167, 367–376 (2004). PubMed PMC
Nam K. & Ellegren H. The chicken (Gallus gallus) Z chromosome contains at least three nonlinear evolutionary strata. Genetics 180, 1131–1136 (2008). PubMed PMC
Wright A. E., Harrison P. W., Montgomery S. H., Pointer M. A. & Mank J. E. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome. Evolution 68, 3281–3295 (2014). PubMed PMC
Jarvis E. D. et al.. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014). PubMed PMC
Kawakami T. et al.. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol. Ecol. 23, 4035–4058 (2014). PubMed PMC
Bellott D. W. et al.. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014). PubMed PMC
Ellegren H. & Fridolfsson A.-K. Male-driven evolution of DNA sequences in birds. Nat. Genet. 17, 182–184 (1997). PubMed
Berlin S. & Ellegren H. Fast accumulation of nonsynonymous mutations on the female-specific W chromosome in birds. J. Mol. Evol. 62, 66–72 (2006). PubMed
Ellegren H. et al.. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491, 756–760 (2012). PubMed
Wilson Sayres M. A., Lohmueller K. E. & Nielsen R. Natural selection reduced diversity on human Y chromosomes. PLoS Genet. 10, e1004064 (2014). PubMed PMC
Singh N. D., Koerich L. B., Carvalho A. B. & Clark A. G. Positive and purifying selection on the Drosophila Y chromosome. Mol. Biol. Evol. 31, 2612–2623 (2014). PubMed PMC
Berlin S. & Ellegren H. Evolutionary genetics: clonal inheritance of avian mitochondrial DNA. Nature 413, 37–38 (2001). PubMed
Berlin S., Tomaras D. & Charlesworth B. Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome. Heredity 99, 389–396 (2007). PubMed
White D., Wolff J., Pierson M. & Gemmell N. Revealing the hidden complexities of mtDNA inheritance. Mol. Ecol. 17, 4925–4942 (2008). PubMed
Lane N. Mitochondria and the W chromosome: low variability on the W chromosome in birds is more likely to indicate selection on mitochondrial genes. Heredity 100, 444–445 (2008). PubMed
Smeds L. & Künstner A. ConDeTri—a content dependent read trimmer for Illumina data. PLoS ONE 6, e26314 (2011). PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2012).
Luo R. et al.. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012). PubMed PMC
Hall A. B. et al.. Insights into the preservation of the homomorphic sex-determining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus. Genome Biol. Evol. 6, 179–191 (2014). PubMed PMC
Huang X. & Madan A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999). PubMed PMC
Xue W. et al.. L_RNA_scaffolder: scaffolding genomes with transcripts. BMC Genomics 14, 604 (2013). PubMed PMC
Grabherr M. G. et al.. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC
Lavoie C., Platt R., Novick P., Counterman B. & Ray D. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mobile DNA 4, 21 (2013). PubMed PMC
Katoh K. & Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008). PubMed
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980). PubMed
Pagan H. J. T., Smith J. D., Hubley R. M. & Ray D. A. PiggyBac-ing on a primate genome: novel elements, recent activity and horizontal transfer. Genome Biol. Evol. 2, 293–303 (2010). PubMed PMC
Cantarel B. L. et al.. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008). PubMed PMC
Künstner A. et al.. Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol. Ecol. 19, 266–276 (2010). PubMed PMC
Trapnell C. et al.. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). PubMed PMC
Thorvaldsdóttir H., Robinson J. T. & Mesirov J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). PubMed PMC
Hart T., Komori H., LaMere S., Podshivalova K. & Salomon D. Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 14, 778 (2013). PubMed PMC
Yanai I. et al.. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005). PubMed
Szalkowski A. Fast and robust multiple sequence alignment with phylogeny-aware gap placement. BMC Bioinformatics 13, 129 (2012). PubMed PMC
Zwickl D. J. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion Ph.D. dissertation. The Univ. of Texas at Austin (2006).
Sukumaran J. & Holder M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010). PubMed
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed
DePristo M. A. et al.. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). PubMed PMC
Hahn C., Bachmann L. & Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads: a baiting and iterative mapping approach. Nucleic Acids Res. 41, e129–e129 (2013). PubMed PMC
Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Galtier N., Gouy M. & Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996). PubMed
Scheet P. & Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006). PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
BioProject
PRJEB7359