Source Apportionment of Polycyclic Aromatic Hydrocarbons in Central European Soils with Compound-Specific Triple Isotopes (δ(13)C, Δ(14)C, and δ(2)H)
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Bayes Theorem MeSH
- Deuterium chemistry MeSH
- Carbon Isotopes MeSH
- Soil Pollutants analysis MeSH
- Markov Chains MeSH
- Monte Carlo Method MeSH
- Computer Simulation MeSH
- Polycyclic Aromatic Hydrocarbons analysis MeSH
- Soil chemistry MeSH
- Geography MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Deuterium MeSH
- Carbon Isotopes MeSH
- Soil Pollutants MeSH
- Polycyclic Aromatic Hydrocarbons MeSH
- Soil MeSH
This paper reports the first study applying a triple-isotope approach for source apportionment of polycyclic aromatic hydrocarbons (PAHs). The (13)C/(12)C, (14)C/(12)C, and (2)H/(1)H isotope ratios of PAHs were determined in forest soils from mountainous areas of the Czech Republic, European Union. Statistical modeling applying a Bayesian Markov chain Monte Carlo (MCMC) framework to the environmental triple isotope PAH data and an end-member PAH isotope database allowed comprehensive accounting of uncertainties and quantitative constraints on the PAH sources among biomass combustion, liquid fossil fuel combustion, and coal combustion at low and high temperatures. The results suggest that PAHs in this central European region had a clear predominance of coal combustion sources (75 ± 6%; uncertainties represent 1 SD), mainly coal pyrolysis at low temperature (∼650 °C; 61 ± 8%). Combustion of liquid fossil fuels and biomass represented 16 ± 3 and 9 ± 3% of the total PAH burden (∑PAH14), respectively. Although some soils were located close to potential PAH point sources, the source distribution was within a narrow range throughout the region. These observation-based top-down constraints on sources of environmental PAHs provide a reference for both improved bottom-up emission inventories and guidance for efforts to mitigate PAH emissions.
References provided by Crossref.org