Impact of meteorological and environmental factors on the spatial distribution of Fasciola hepatica in beef cattle herds in Sweden

. 2015 Jun 09 ; 11 () : 128. [epub] 20150609

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26054940
Odkazy

PubMed 26054940
PubMed Central PMC4459679
DOI 10.1186/s12917-015-0447-0
PII: 10.1186/s12917-015-0447-0
Knihovny.cz E-zdroje

BACKGROUND: Fasciola hepatica is a parasite with a significant impact on ruminant livestock production. Previous studies in north-west Europe have described its geographical distribution and determined potential predictors of fasciolosis using geographical information system (GIS) and regression modelling. In Sweden, however, information about the distribution of fasciolosis is limited. This study examined the geographical distribution of F. hepatica and identified high-risk areas for beef cattle in Sweden and sought to characterise potential predictors. Beef cattle serum samples were collected during winter 2006-2007 from 2135 herds which were examined for F. hepatica antibodies by enzyme-linked immunosorbent assay (ELISA). Fasciolosis distribution maps were created using GIS based on postcode location of seropositive herds. Spatial scan analysis (SaTScan) was performed to determine high-risk areas. Using datasets on animal density, temperature, precipitation and Corine land cover data, including soil type and soil mineral concentrations in Sweden, bivariate and multiple logistic regression analyses were carried out in R software to reveal potential predictors of F. hepatica infection. RESULTS: Overall herd seroprevalence of F. hepatica in beef cattle was 9.8 % (95 % CI: 8.6-11.1). An irregular spatial distribution of F. hepatica, with two main clusters, was observed in south-west Sweden. The most northerly occurrence of F. hepatica in the world was documented. The final model explained 15.8 % of the variation in F. hepatica distribution in study herds. Absence of coniferous forest was the variable with the highest predictive value. Precipitation in July-September, Dystric Cambisol, Dystric Regosol, and P and Cu concentrations in soil were other negative predictors. Beef cattle herd density, Dystric Leptosol and Fe concentration were positive predictors. CONCLUSIONS: The spatial distribution of F. hepatica in Swedish beef cattle herds is influenced by multi-factorial effects. Interestingly, absence of coniferous forest, herd density, specific soil type and concentration of some soil minerals are more important predictors than climate factors.

Zobrazit více v PubMed

Torgerson P, Claxton J. Epidemiology and Control. In: Dalton JP, editor. Fasciolosis. Wallingford: CABI Pub; 1999. pp. 113–149.

Sanchez-Vazquez MJ, Lewis FI. Investigating the impact of fasciolosis on cattle carcase performance. Vet Parasitol. 2013;193:307–311. doi: 10.1016/j.vetpar.2012.11.030. PubMed DOI

Charlier J, Vercruysse J, Morgan E, Van Dijk J, Williams DJL. Recent advances in the diagnosis, impact on production and prediction of Fasciola hepatica in cattle. Parasitol. 2014;141:326–335. doi: 10.1017/S0031182013001662. PubMed DOI

Anonymous. Official statistics from Swedish abattoirs. Stockholm: Swedish Board of Agriculture; 2014.

Rapsch C, Schweizer G, Grimm F, Kohler L, Bauer C, Deplazes P, Braun U, Torgerson PR. Estimating the true prevalence of Fasciola hepatica in cattle slaughtered in Switzerland in the absence of an absolute diagnostic test. Int J Parasitol. 2006;36:1153–1158. doi: 10.1016/j.ijpara.2006.06.001. PubMed DOI

Reichel MP, Vanhoff K, Baxter B. Performance characteristics of an enzyme-linked immunosorbent assay performed in milk for the detection of liver fluke (Fasciola hepatica) infection in cattle. Vet Parasitol. 2005;129:61–66. doi: 10.1016/j.vetpar.2004.12.013. PubMed DOI

Salimi-Bejestani MR, McGarry JW, Felstead S, Ortiz P, Akca A, Williams DJL. Development of an antibody-detection ELISA for Fasciola hepatica and its evaluation against a commercially available test. Res Vet Scie. 2005;78:177–181. doi: 10.1016/j.rvsc.2004.08.005. PubMed DOI

Bennema S, Vercruysse J, Claerebout E, Schnieder T, Strube C, Ducheyne E, Hendrickx G, Charlier J. The use of bulk-tank milk ELISAs to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparus in dairy cattle in Flanders (Belgium) Vet Parasitol. 2009;165:51–57. doi: 10.1016/j.vetpar.2009.07.006. PubMed DOI

McCann CM, Baylis M, Williams DJL. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Vet Rec. 2010;166:612–617. doi: 10.1136/vr.b4836. PubMed DOI

McCann CM, Baylis M, Williams DJL. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int J Parasitol. 2010;40:1021–1028. doi: 10.1016/j.ijpara.2010.02.009. PubMed DOI

Kuerpick B, Conraths FJ, Staubach C, Frohlich A, Schnieder T, Strube C. Seroprevalence and GIS-supported risk factor analysis of Fasciola hepatica infections in dairy herds in Germany. Parasitol. 2013;140:1051–1060. doi: 10.1017/S0031182013000395. PubMed DOI

Kuerpick B, Fiedor C, von Samson-Himmelstjerna G, Schnieder T, Strube C. Bulk milk-estimated seroprevalence of Fasciola hepatica in dairy herds and collecting of risk factor data in East Frisia, northern Germany. Berl Munch Tierarztl Wochenschr. 2012;125:345–350. PubMed

Duscher R, Duscher G, Hofer J, Tichy A, Prosl H, Joachim A. Fasciola hepatica - monitoring the milky way? The use of tank milk for liver fluke monitoring in dairy herds as base for treatment strategies. Vet Parasitol. 2011;178:273–278. doi: 10.1016/j.vetpar.2011.01.040. PubMed DOI

Anonymous. The Animal Welfare Act, 1988. Stockholm: Swedish Board of Agriculture; 2009.

Novobilský A, Sollenberg S, Höglund J. Distribution of Fasciola hepatica in Swedish dairy cattle and associations to pasture management factors. Geospat Health. 2015;9:293–300. doi: 10.4081/gh.2015.351. PubMed DOI

Fox NJ, White PC, McClean CJ, Marion G, Evans A, Hutchings MR. Predicting impacts of climate change on Fasciola hepatica risk. Plos One. 2011;6:e16126. doi: 10.1371/journal.pone.0016126. PubMed DOI PMC

Charlier J, Bennema SC, Caron Y, Counotte M, Ducheyne E, Hendrickx G, Vercruysse J. Towards assessing fine-scale indicators for the spatial transmission risk of Fasciola hepatica in cattle. Geospat Health. 2011;5:239–245. doi: 10.4081/gh.2011.176. PubMed DOI

Bennema SC, Ducheyne E, Vercruysse J, Claerebout E, Hendrickx G, Charlier J. Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone. Int J Parasitol. 2011;41:225–233. doi: 10.1016/j.ijpara.2010.09.003. PubMed DOI

Selemetas N, Phelan P, O'Kiely P, de Waal T. Weather and soil type affect incidence of fasciolosis in dairy cow herds. Vet Rec. 2014;175:371. doi: 10.1136/vr.102437. PubMed DOI

Selemetas N, Ducheyne E, Phelan P, O' Kiely P, Hendrickx G, de Waal T. Spatial analysis and risk mapping of Fasciola hepatica infection in dairy herds in Ireland. Geospat Health. 2015;9:281–291. doi: 10.4081/gh.2015.350. PubMed DOI

Nilsson C, Ericsson U, Medin M, Sundberg I. Sotvattenssnackor i sodra Sverige - en jamforelse med 1940-talet. Stockholm: Naturvårdsverket; 1998.

Gloer P. Die Süßwassergastropoden Nord- und Mitteleuropas. Hackenheim: Conchbooks; 2002.

Loobuyck M, Frössling J, Lindberg A, Björkman C. Seroprevalence and spatial distribution of Neospora caninum in a population of beef cattle. Prev Vet Med. 2009;92:116–122. doi: 10.1016/j.prevetmed.2009.07.006. PubMed DOI

Novobilský A, Kašný M, Mikeš L, Kovařčík K, Koudela B. Humoral immune responses during experimental infection with Fascioloides magna and Fasciola hepatica in goats and comparison of their excretory/secretory products. Parasitol Res. 2007;101:357–364. doi: 10.1007/s00436-007-0463-5. PubMed DOI

Novobilský A, Engström A, Sollenberg S, Gustafsson K, Morrison DA, Höglund J. Transmission patterns of Fasciola hepatica to ruminants in Sweden. Vet Parasitol. 2014;203:276–286. doi: 10.1016/j.vetpar.2014.04.015. PubMed DOI

Kulldorff M. A spatial scan statistic. Commun Stat-Theor M. 1997;26:1481–1496. doi: 10.1080/03610929708831995. DOI

Swedish Board of Agriculture. Livestock in June 2007, accessed in January 2015 http://www.jordbruksverket.se/webdav/files/SJV/Amnesomraden/Statistik%2C%20fakta/Husdjur/JO20/JO20SM0701/JO20SM0701_ikortadrag.htm

Höglund J, Dahlström F, Engström A, Hessle A, Jakubek EB, Schnieder T, Strübe C, Sollenberg S. Antibodies to major pasture borne helminth infections in bulk-tank milk samples from organic and nearby conventional dairy herds in south-central Sweden. Vet Parasitol. 2010;171:293–299. doi: 10.1016/j.vetpar.2010.04.002. PubMed DOI

Salimi-Bejestani MR, Daniel RG, Felstead SM, Cripps PJ, Mahmoody H, Williams DJL. Prevalence of Fasciola hepatica in dairy herds in England and Wales measured with an ELISA applied to bulk-tank milk. Vet Rec. 2005;156:729–731. doi: 10.1136/vr.156.23.729. PubMed DOI

Nilsson O. Fasciola hepatica - Prevalence and epidemiology in Sweden. Nord Vet Med. 1974;26:42–47. PubMed

Ollerenshaw CB, Smith LP. Meteorological factors and forecasts of helminthic disease. Adv Parasitol. 1969;7:283–323. PubMed

Malone JB, Zukowski SH. Geographic models and control of cattle liver flukes in the Southern USA. Parasitol Today. 1992;8:266–270. doi: 10.1016/0169-4758(92)90138-R. PubMed DOI

Durr PA, Tait N, Lawson AB. Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis. Prev Vet Med. 2005;71:157–172. doi: 10.1016/j.prevetmed.2005.07.013. PubMed DOI

Rapsch C, Dahinden T, Heinzmann D, Torgerson PR, Braun U, Deplazes P, Hurni L, Bar H, Knubben-Schweizer G. An interactive map to assess the potential spread of Lymnaea truncatula and the free-living stages of Fasciola hepatica in Switzerland. Vet Parasitol. 2008;154:242–249. doi: 10.1016/j.vetpar.2008.03.030. PubMed DOI

Novobilský A, Kašný M, Beran L, Rondelaud D, Höglund J. Lymnaea palustris and Lymnaea fuscus are potential but uncommon intermediate hosts of Fasciola hepatica in Sweden. Parasit Vec. 2013;6:251. doi: 10.1186/1756-3305-6-251. PubMed DOI PMC

Beran L. Aquatic molluscs of the Czech Republic – distribution and its changes, habitats, dispersal, threat and protection, Red List. Uherské Hradiště: Sborník přírodovědného klubu; 2002.

Martin K, Sommer M. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. J Biogeogr. 2004;31:531–545. doi: 10.1046/j.1365-2699.2003.01005.x. DOI

Nilsson Å: Dominating soil class according to FAO, In: MarkInfohttp://www-markinfo.slu.se/eng/soildes/jman/faodom.html

Brix KV, Esbaugh AJ, Grosell M. The toxicity and physiological effects of copper on the freshwater pulmonate snail, Lymnaea stagnalis. Comp Biochem Phys C. 2011;154:261–267. PubMed

Coppolino ML. Land snail abundance and diversity with associated ecological variables in six Southern Illinois counties. Carbondale: Southern Illinois University; 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...