Effects of hypertonic saline and mannitol on cortical cerebral microcirculation in a rabbit craniotomy model
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26055873
PubMed Central
PMC4459466
DOI
10.1186/s12871-015-0067-z
PII: 10.1186/s12871-015-0067-z
Knihovny.cz E-zdroje
- MeSH
- hemodynamika účinky léků MeSH
- hypertonický solný roztok farmakologie MeSH
- králíci MeSH
- kraniotomie metody MeSH
- mannitol farmakologie MeSH
- mikrocirkulace účinky léků MeSH
- mozková kůra krevní zásobení účinky léků MeSH
- mozkový krevní oběh účinky léků MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- hypertonický solný roztok MeSH
- mannitol MeSH
BACKGROUND: Hyperosmolar solutions have been used in neurosurgery to modify brain bulk and prevent neurological deterioration. The aim of this animal study was to compare the short-term effects of equivolemic, equiosmolar solutions of mannitol and hypertonic saline (HTS) on cerebral cortical microcirculation in a rabbit craniotomy model. METHODS: Rabbits (weight, 2.0-3.0 kg) were anesthetized, ventilated mechanically, and subjected to a craniotomy. The animals were allocated randomly to receive a 3.75 ml/kg intravenous infusion of either 3.2% HTS (group HTS, n = 8) or 20% mannitol (group MTL, n = 8). Microcirculation in the cerebral cortex was evaluated using sidestream dark-field (SDF) imaging before and 20 min after the end of the 15-min HTS infusion. Global hemodynamic data were recorded, and blood samples for laboratory analysis were obtained at the time of SDF image recording. RESULTS: No differences in the microcirculatory parameters were observed between the groups before the use of osmotherapy. After osmotherapy, lower proportions of perfused small vessel density (P = 0.0474), perfused vessel density (P = 0.0457), and microvascular flow index (P = 0.0207) were observed in the MTL group compared with those in the HTS group. CONCLUSIONS: Our findings suggest that an equivolemic, equiosmolar HTS solution better preserves perfusion of cortical brain microcirculation compared to MTL in a rabbit craniotomy model.
Zobrazit více v PubMed
Gemma M, Cozzi S, Tommasino C, Mungo M, Calvi MR, Cipriani A, Garancini MP. 7.5 % hypertonic saline versus 20 % mannitol during elective neurosurgical supratentorial procedures. J Neurosurg Anesthesiol. 1997;9:329–334. doi: 10.1097/00008506-199710000-00007. PubMed DOI
De Vivo P, Del Gaudio A, Ciritella P, Puopolo M, Chiarotti F, Mastronardi E. Hypertonic saline solution: a safe alternative to mannitol 18 % in neurosurgery. Minerva Anestesiol. 2001;67:603–611. PubMed
Quentin C, Charbonneau S, Moumdjian R, Lallo A, Bouthilier A, Fournier-Gosselin MP, Bojanowski M, Ruel M, Sylvestre MP, Girard F. A comparison of two doses of mannitol on brain relaxation during supratentorial brain tumor craniotomy: a randomized trial. Anesth Analg. 2013;116:862–868. doi: 10.1213/ANE.0b013e318282dc70. PubMed DOI
Rozet I, Tontisirin N, Muangman S, Vavilala MS, Souter MJ, Lee LA, Kincaid MS, Britz GW, Lam AM. Effect of equiosmolar solutions of mannitol versus hypertonic saline on intraoperative brain relaxation and electrolyte balance. Anesthesiology. 2007;107:697–704. doi: 10.1097/01.anes.0000286980.92759.94. PubMed DOI
Wu CT, Chen LC, Kuo CP, Ju DT, Borel CO, Cherng CH, Wong CS. A comparison of 3 % hypertonic saline and mannitol for brain relaxation during elective supratentorial brain tumor surgery. Anesth Analg. 2010;110:903–907. doi: 10.1213/ANE.0b013e3181cb3f8b. PubMed DOI
Shao L, Hong F, Zou Y, Hao X, Hou H, Tian M. Hypertonic saline for brain relaxation and intracranial pressure in patients undergoing neurosurgical procedures: a meta-analysis of randomized controlled trials. PLoS One. 2015;10 doi: 10.1371/journal.pone.0117314. PubMed DOI PMC
Fenstermacher JD, Johnson JA. Filtration and reflection coefficients of the rabbit blood–brain barrier. Am J Physiol. 1966;211:341–346. PubMed
Paczynski RP, He YY, Diringer MN, Hsu CY. Multiple-dose mannitol reduces brain water content in a rat model of cortical infarction. Stroke. 1997;28:1437–1443. doi: 10.1161/01.STR.28.7.1437. PubMed DOI
Fenstermacher JD. Volume regulation of the central nervous system. In: Staub NC, Taylor AE, editors. Edema. New York: Raven Press; 1984. pp. 383–404.
Paczynski RP. Osmotherapy. Basic concepts and controversies. Crit Care Clin. 1997;13:105–129. doi: 10.1016/S0749-0704(05)70298-0. PubMed DOI
Kamel H, Navi BB, Nakagawa K, Hemphill JC, 3rd, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39:554–559. doi: 10.1097/CCM.0b013e318206b9be. PubMed DOI
White H, Cook D, Venkatesh B. The use of hypertonic saline for treating intracranial hypertension after traumatic brain injury. Anesth Analg. 2006;102:1836–1846. doi: 10.1213/01.ane.0000217208.51017.56. PubMed DOI
Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, Kofke WA, Mayer SA, LeRoux PD. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80:916–920. doi: 10.1136/jnnp.2008.156596. PubMed DOI
Muizelaar JP, Lutz HA, III, Becker DP. Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg. 1984;61:700–706. doi: 10.3171/jns.1984.61.4.0700. PubMed DOI
Burke AM, Quest DO, Chien S, Cerri C. The effects of mannitol on blood viscosity. J Neurosurg. 1981;55:550–553. doi: 10.3171/jns.1981.55.4.0550. PubMed DOI
Mendelow AD, Teasdale GM, Russell T, Flood J, Patterson J, Murray GD. Effect of mannitol on cerebral blood flow and cerebral perfusion pressure in human head injury. J Neurosurg. 1985;63:43–48. doi: 10.3171/jns.1985.63.1.0043. PubMed DOI
Donato T, Shapira Y, Artru A, Powers K. Effect of mannitol on cerebrospinal fluid dynamics and brain tissue edema. Anesth Analg. 1994;78:58–66. doi: 10.1213/00000539-199401000-00011. PubMed DOI
Alvarez B, Ferrer-Sueta G, Radi R. Slowing of peroxynitrite decomposition in the presence of mannitol and ethanol. Free Radic Biol Med. 1998;24:1331–1337. doi: 10.1016/S0891-5849(98)00005-7. PubMed DOI
Korenkov AI, Pahnke J, Frei K, Warzok R, Schroeder HW, Frick R, Muljana L, Piek J, Yonekawa Y, Gaab MR. Treatment with nimodipine or mannitol reduces programmed cell death and infarct size following focal cerebral ischemia. Neurosurg Rev. 2000;23:145–150. doi: 10.1007/PL00011946. PubMed DOI
Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–15114. doi: 10.1364/OE.15.015101. PubMed DOI
Bartels SA, Bezemer R, Milstein DM, Radder M, Lima A, Cherpanath TG, Heger M, Karemaker JM, Ince C. The microcirculatory response to compensated hypovolemia in a lower body negative pressure model. Microvasc Res. 2011;82:374–380. doi: 10.1016/j.mvr.2011.07.010. PubMed DOI
de Backer D, Creteur J, Dubios MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–99. doi: 10.1016/j.ahj.2003.07.006. PubMed DOI
Sitina M, Turek Z, Parízkova R, Cerny V. In situ assessment of the brain microcirculation in mechanically-ventilated rabbits using sidestream dark-field (SDF) imaging. Physiol Res. 2011;60:75–81. PubMed
Sitina M, Turek Z, Parizkova R, Lehmann C, Cerny V. Preserved cerebral microcirculation in early stages of endotoxemia in mechanically-ventilated rabbits. Clin Hemorheol Microcirc. 2011;47:37–44. PubMed
Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent JL, De Backer D. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;14:R140. doi: 10.1186/cc9205. PubMed DOI PMC
Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, Donadello K, Dewitte O, Vincent JL, De Backer D. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. 2014;42:e114–122. doi: 10.1097/CCM.0b013e3182a641b8. PubMed DOI
de Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, Dobbe I, Ince C. How to evaluate the microcirculation? Report of a round table conference. Crit Care. 2007;11:R101. doi: 10.1186/cc6118. PubMed DOI PMC
Wang LC, Papangelou A, Lin C, Mirski MA, Gottschalk A, Toung TJ. Comparison of equivolume, equiosmolar solutions of mannitol and hypertonic saline with or without furosemide on brain water content in normal rats. Anesthesiology. 2013;118:903–913. doi: 10.1097/ALN.0b013e31828156ff. PubMed DOI
Sabharwal N, Rao GS, Ali Z, Radhakrishnan M. Hemodynamic changes after administration of mannitol measured by a noninvasive cardiac output monitor. J Neurosurg Anesthesiol. 2009;21:248–52. doi: 10.1097/ANA.0b013e3181a6aebf. PubMed DOI
Marks JA, Li S, Gong W, Sanati P, Eisenstadt R, Sims C, Smith DH, Reilly PM, Pascual JL. Similar effects of hypertonic saline and mannitol on the inflammation of the blood–brain barrier microcirculation after brain injury in a mouse model. J Trauma Acute Care Surg. 2012;73:351–357. doi: 10.1097/TA.0b013e3182592f76. PubMed DOI
Pennings FA, Bouma GJ, Ince C. Direct observation of the human cerebral microcirculation during aneurysm surgery reveals increased arteriolar contractility. Stroke. 2004;35:1284–1288. doi: 10.1161/01.STR.0000126039.91400.cb. PubMed DOI
Mortazavi MM, Romeo AK, Deep A, Griessenauer CJ, Shoja MM, Tubbs RS, Fisher W. Hypertonic saline for treating raised intracranial pressure: literature review with meta-analysis. J Neurosurg. 2012;116:210–221. doi: 10.3171/2011.7.JNS102142. PubMed DOI
Mirski AM, Denchev ID, Schnitzer SM, Hanley FD. Comparison between hypertonic saline and mannitol in the reduction of elevated intracranial pressure in a rodent model of acute cerebral injury. J Neurosurg Anesthesiol. 2000;12:334–344. doi: 10.1097/00008506-200010000-00006. PubMed DOI