• This record comes from PubMed

Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial

. 2015 Aug ; 53 (8) : 2632-40. [epub] 20150610

Language English Country United States Media print-electronic

Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't

In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification.

See more in PubMed

. 2000. Reference directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. Off J Eur Communities L262:21–45.

Branda JA, Ruoff K. 2002. Bioterrorism. Clinical recognition and primary management. Am J Clin Pathol 117(Suppl):S116–S123. PubMed

Pappas G, Panagopoulou P, Akritidis N. 2009. Reclassifying bioterrorism risk: are we preparing for the proper pathogens? J Infect Public Health 2:55–61. doi:10.1016/j.jiph.2009.03.002. PubMed DOI

Horn JK. 2003. Bacterial agents used for bioterrorism. Surg Infect (Larchmt) 4:281–287. doi:10.1089/109629603322419625. PubMed DOI

Svensson K, Back E, Eliasson H, Berglund L, Granberg M, Karlsson L, Larsson P, Forsman M, Johansson A. 2009. Landscape epidemiology of tularemia outbreaks in Sweden. Emerg Infect Dis 15:1937–1947. doi:10.3201/eid1512.090487. PubMed DOI PMC

Thelaus J, Andersson A, Broman T, Backman S, Granberg M, Karlsson L, Kuoppa K, Larsson E, Lundmark E, Lundstrom JO, Mathisen P, Naslund J, Schafer M, Wahab T, Forsman M. 2014. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb Ecol 67:96–107. doi:10.1007/s00248-013-0285-1. PubMed DOI PMC

Vogler AJ, Chan F, Nottingham R, Andersen G, Drees K, Beckstrom-Sternberg SM, Wagner DM, Chanteau S, Keim P. 2013. A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague. mBio 4(1):e00623–12. doi:10.1128/mBio.00623-12. PubMed DOI PMC

Vogler AJ, Chan F, Wagner DM, Roumagnac P, Lee J, Nera R, Eppinger M, Ravel J, Rahalison L, Rasoamanana BW, Beckstrom-Sternberg SM, Achtman M, Chanteau S, Keim P. 2011. Phylogeography and molecular epidemiology of Yersinia pestis in Madagascar. PLoS Negl Trop Dis 5:e1319. doi:10.1371/journal.pntd.0001319. PubMed DOI PMC

Bartlett JG, Inglesby TV Jr, Borio L. 2002. Management of anthrax. Clin Infect Dis 35:851–858. doi:10.1086/341902. PubMed DOI

Kennedy H. 31 October 2001. Daschle letter bombshell—billions of anthrax spores. New York Daily News, New York, NY: http://www.nydailynews.com/archives/news/daschle-letter-bombshell-billions-anthrax-spores-article-1.921507.

Wagar EA, Mitchell MJ, Carroll KC, Beavis KG, Petti CA, Schlaberg R, Yasin B. 2010. A review of sentinel laboratory performance: identification and notification of bioterrorism agents. Arch Pathol Lab Med 134:1490–1503. doi:10.1043/2010-0098-CP.1. PubMed DOI

Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. 1996. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586. doi:10.1038/nbt1196-1584. PubMed DOI

Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr. 1996. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232. doi:10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6. PubMed DOI

Krishnamurthy T, Rajamani U, Ross PL. 1996. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:883–888. doi:10.1002/(SICI)1097-0231(19960610)10:8<883::AID-RCM594>3.3.CO;2-M. PubMed DOI

Dieckmann R, Helmuth R, Erhard M, Malorny B. 2008. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:7767–7778. doi:10.1128/AEM.01402-08. PubMed DOI PMC

Sandrin TR, Goldstein JE, Schumaker S. 2013. MALDI-TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev 32:188–217. doi:10.1002/mas.21359. PubMed DOI

Fenselau C, Demirev PA. 2001. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171. doi:10.1002/mas.10004. PubMed DOI

Patel R. 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem 61:100–111. doi:10.1373/clinchem.2014.221770. PubMed DOI

Patel R. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 57:564–572. doi:10.1093/cid/cit247. PubMed DOI

Ferreira L, Vega Castaño S, Sánchez-Juanes F, González-Cabrero S, Menegotto F, Orduña-Domingo A, González-Buitrago JM, Muñoz-Bellido JL. 2010. Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS One 5:e14235. PubMed PMC

Seibold E, Maier T, Kostrzewa M, Zeman E, Splettstoesser W. 2010. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J Clin Microbiol 48:1061–1069. doi:10.1128/JCM.01953-09. PubMed DOI PMC

Elhanany E, Barak R, Fisher M, Kobiler D, Altboum Z. 2001. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:2110–2116. doi:10.1002/rcm.491. PubMed DOI

Drevinek M, Dresler J, Klimentova J, Pisa L, Hubalek M. 2012. Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Lett Appl Microbiol 55:40–46. doi:10.1111/j.1472-765X.2012.03255.x. PubMed DOI

Lasch P, Beyer W, Nattermann H, Stammler M, Siegbrecht E, Grunow R, Naumann D. 2009. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol 75:7229–7242. doi:10.1128/AEM.00857-09. PubMed DOI PMC

Hagan NA, Lin JS, Antoine MD, Cornish TJ, Quizon RS, Collins BF, Feldman AB, Demirev PA. 2011. MALDI mass spectrometry for rapid detection and characterization of biological threats, p 211–224. In Fenselau C, Demirev P (ed), Rapid characterization of microorganisms by mass spectrometry. ACS Symposium Series no. 1065. American Chemical Society, Washington, DC.

Demirev PA, Fenselau C. 2008. Mass spectrometry in biodefense. J Mass Spectrom 43:1441–1457. doi:10.1002/jms.1474. PubMed DOI

Cunningham SA, Patel R. 2013. Importance of using Bruker's security-relevant library for Biotyper identification of Burkholderia pseudomallei, Brucella species, and Francisella tularensis. J Clin Microbiol 51:1639–1640. doi:10.1128/JCM.00267-13. PubMed DOI PMC

Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U, Fahr AM, He Y, Ilina EN, Kostrzewa M, Maier T, Mancinelli L, Moussaoui W, Prévost G, Putignani L, Seachord CL, Tang YW, Harmsen D. 2009. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol 47:3732–3734. doi:10.1128/JCM.00921-09. PubMed DOI PMC

Wittwer M, Lasch P, Drevinek M, Schmoldt S, Indra A, Jacob D, Grunow R. 2012. First report: application of MALDI-TOF MS within an external quality assurance exercise for the discrimination of highly pathogenic bacteria from contaminant flora. Appl Biosaf 17:59–63.

Freiwald A, Sauer S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4:732–742. doi:10.1038/nprot.2009.37. PubMed DOI

Committee for Biological Agents (ABAS). 2013. Technical rule for biological agents 100 (TRBA 100). Protective measures for activities involving biological agents in laboratories. GMBI no. 51/52 of 17.10.2013, p 1010–1042.

Schulthess B, Bloemberg GV, Zbinden R, Bottger EC, Hombach M. 2014. Evaluation of the Bruker MALDI Biotyper for identification of Gram-positive rods: development of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol 52:1089–1097. doi:10.1128/JCM.02399-13. PubMed DOI PMC

Maier T, Klepel S, Renner Z, Kostrzewa M. 2006. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat Methods 3:324–334. doi:10.1038/nmeth0406-324. DOI

Lasch P, Nattermann H, Erhard M, Stammler M, Grunow R, Bannert N, Appel B, Naumann D. 2008. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal Chem 80:2026–2034. doi:10.1021/ac701822j. PubMed DOI

. 2012. MALDI BioTyper 3.0 User Manual. Bruker Daltonic GmbH, Bremen, Germany.

Lasch P, Drevinek M, Nattermann H, Grunow R, Stammler M, Dieckmann R, Schwecke T, Naumann D. 2010. Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Anal Chem 82:8464–8475. doi:10.1021/ac101036s. PubMed DOI

Lasch P, Fleige C, Stammler M, Layer F, Nubel U, Witte W, Werner G. 2014. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J Microbiol Methods 100:58–69. doi:10.1016/j.mimet.2014.02.015. PubMed DOI

Lasch P, Naumann D. 2011. MALDI-TOF mass spectrometry for the rapid identification of highly pathogenic microorganisms, p 219–212. In Stulik J, Toman R, Butaye P, Ulrich RG (ed), Proteomics, glycomics and antigenicity of BSL3 and BSL4 agents, 1st ed Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany.

Lasch P. 2015. MicrobeMS: a Matlab toolbox for analysis of microbial MALDI-TOF mass spectra. http://www.microbe-ms.com.

Wikipedia contributors. 2015. Mass spectrometry data format, on Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Mass_spectrometry_data_format#mzML.

Goldstein JE, Zhang L, Borror CM, Rago JV, Sandrin TR. 2013. Culture conditions and sample preparation methods affect spectrum quality and reproducibility during profiling of Staphylococcus aureus with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lett Appl Microbiol 57:144–150. doi:10.1111/lam.12092. PubMed DOI

Tracz DM, McCorrister SJ, Westmacott GR, Corbett CR. 2013. Effect of gamma radiation on the identification of bacterial pathogens by MALDI-TOF MS. J Microbiol Methods 92:132–134. doi:10.1016/j.mimet.2012.11.013. PubMed DOI

Dauphin LA, Newton BR, Rasmussen MV, Meyer RF, Bowen MD. 2008. Gamma irradiation can be used to inactivate Bacillus anthracis spores without compromising the sensitivity of diagnostic assays. Appl Environ Microbiol 74:4427–4433. doi:10.1128/AEM.00557-08. PubMed DOI PMC

Hillenkamp FE, Peter-Katalinic PE. 2013. MALDI MS: a practical guide to instrumentation, methods and applications, 2nd ed Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany.

Berlett BS, Levine RL, Stadtman ER. 1996. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. J Biol Chem 271:4177–4182. doi:10.1074/jbc.271.8.4177. PubMed DOI

Lasch P, Petras T, Ullrich O, Backmann J, Naumann D, Grune T. 2001. Hydrogen peroxide-induced structural alterations of RNase A. J Biol Chem 276:9492–9502. doi:10.1074/jbc.M008528200. PubMed DOI

Demirev PA. 2004. Enhanced specificity of bacterial spore identification by oxidation and mass spectrometry. Rapid Commun Mass Spectrom 18:2719–2722. doi:10.1002/rcm.1680. PubMed DOI

Callahan C, Fox K, Fox A. 2009. The small acid soluble proteins (SASP alpha and SASP beta) of Bacillus weihenstephanensis and Bacillus mycoides group 2 are the most distinct among the Bacillus cereus group. Mol Cell Probes 23:291–297. doi:10.1016/j.mcp.2009.07.003. PubMed DOI PMC

Petersen CE, Valentine NB, Wahl KL. 2009. Characterization of microorganisms by MALDI mass spectrometry. Methods Mol Biol 492:367–379. PubMed

Schey KL. 1996. Hydrophobic proteins and peptides analyzed by matrix-assisted laser desorption/ionization. Methods Mol Biol 61:227–230. PubMed

Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96:14043–14048. doi:10.1073/pnas.96.24.14043. PubMed DOI PMC

Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P. 2004. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A 101:17837–17842. doi:10.1073/pnas.0408026101. PubMed DOI PMC

Trebesius K, Harmsen D, Rakin A, Schmelz J, Heesemann J. 1998. Development of rRNA-targeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species. J Clin Microbiol 36:2557–2564. PubMed PMC

Wittwer M, Heim J, Schar M, Dewarrat G, Schurch N. 2011. Tapping the potential of intact cell mass spectrometry with a combined data analytical approach applied to Yersinia spp.: detection, differentiation and identification of Y. pestis. Syst Appl Microbiol 34:12–19. doi:10.1016/j.syapm.2010.11.006. PubMed DOI

Castanha ER, Fox A, Fox KF. 2006. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of “intact” small acid soluble proteins (SASPs) using mass spectrometry. J Microbiol Methods 67:230–240. doi:10.1016/j.mimet.2006.03.024. PubMed DOI

Castanha ER, Vestal M, Hattan S, Fox A, Fox KF, Dickinson D. 2007. Bacillus cereus strains fall into two clusters (one closely and one more distantly related) to Bacillus anthracis according to amino acid substitutions in small acid-soluble proteins as determined by tandem mass spectrometry. Mol Cell Probes 21:190–201. doi:10.1016/j.mcp.2006.11.002. PubMed DOI

Hathout Y, Demirev PA, Ho YP, Bundy JL, Ryzhov V, Sapp L, Stutler J, Jackman J, Fenselau C. 1999. Identification of Bacillus spores by matrix-assisted laser desorption ionization-mass spectrometry. Appl Environ Microbiol 65:4313–4319. PubMed PMC

Hathout Y, Setlow B, Cabrera-Martinez RM, Fenselau C, Setlow P. 2003. Small, acid soluble proteins as biomarkers in mass spectrometry analysis of Bacillus spores. Appl Environ Microbiol 69:1100–1107. doi:10.1128/AEM.69.2.1100-1107.2003. PubMed DOI PMC

Dybwad M, van der Laaken AL, Blatny JM, Paauw A. 2013. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Appl Environ Microbiol 79:5372–5383. doi:10.1128/AEM.01724-13. PubMed DOI PMC

International Air Transport Association. 2013. Dangerous goods regulations manual, 55th ed International Air Transport Association, Montreal, Canada.

International Organization for Standardization. 2006. Sterilization of health care products—radiation—part 1: requirements for development, validation, and routine control of a sterilization process for medical devices. ISO 11137-1:2006 International Organization for Standardization, Geneva, Switzerland.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...