A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria

. 2025 Jan 31 ; 12 (1) : 187. [epub] 20250131

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, dataset

Perzistentní odkaz   https://www.medvik.cz/link/pmid39890826

Grantová podpora
031B0582B and 01DN15016 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
031B0582A Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
n/a Bundesministerium für Gesundheit (Federal Ministry of Health, Germany)

Odkazy

PubMed 39890826
PubMed Central PMC11785946
DOI 10.1038/s41597-025-04504-z
PII: 10.1038/s41597-025-04504-z
Knihovny.cz E-zdroje

Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.

Zobrazit více v PubMed

Cuenod, A. et al. Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains. Clin. Microbiol. Infect. 10.1016/j.cmi.2022.05.017 (2022). PubMed

Welker, M., Van Belkum, A., Girard, V., Charrier, J. P. & Pincus, D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics16, 695–710, 10.1080/14789450.2019.1645603 (2019). PubMed

Sauer, S. & Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol.8, 74–82, 10.1038/nrmicro2243 (2010). PubMed

Maier, T., Klepel, S., Renner, Z. & Kostrzewa, M. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat. Methods.3, 324–334, 10.1038/nmeth870 (2006).

Seng, P. et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis.49, 543–551, 10.1086/600885 (2009). PubMed

Clark, A. E., Kaleta, E. J., Arora, A. & Wolk, D. M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev.26, 547–603, 10.1128/CMR.00072-12 (2013). PubMed PMC

Mortier, T., Wieme, A. D., Vandamme, P. & Waegeman, W. Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study. Comput Struct Biotechnol J19, 6157–6168, 10.1016/j.csbj.2021.11.004 (2021). PubMed PMC

Kostrzewa, M. & Maier, T. Criteria for Development of MALDI-TOF Mass Spectral Database. (2017).

Ashfaq, M. Y., Da’na, D. A. & Al-Ghouti, M. A. Application of MALDI-TOF MS for identification of environmental bacteria: A review. J. Environ. Manage.305, 114359, 10.1016/j.jenvman.2021.114359 (2022). PubMed

de Koster, C. G. & Brul, S. MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens. Current Opinion in Food Science10, 76–84, 10.1016/j.cofs.2016.11.004 (2016).

Thompson, J. E. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present). Vet World15, 2623–2657, 10.14202/vetworld.2022.2623-2657 (2022). PubMed PMC

Elhanany, E., Barak, R., Fisher, M., Kobiler, D. & Altboum, Z. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.15, 2110–2116, 10.1002/rcm.491 (2001). PubMed

Lasch, P. et al. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial. J. Clin. Microbiol.53, 2632–2640, 10.1128/JCM.00813-15 (2015). PubMed PMC

Lasch, P. et al. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal. Chem.80, 2026–2034, 10.1021/ac701822j (2008). PubMed

Lasch, P., Grunow, R., Antonation, K., Weller, S. A. & Jacob, D. Inactivation Techniques for MALDI-TOF MS Analysis of Highly Pathogenic Bacteria - A Critical Review. Trac-Trend Anal Chem85, Part B, 112–119 (2016). 10.1016/j.trac.2016.04.012.

Lasch, P. et al. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl. Environ. Microbiol.75, 7229–7242, 10.1128/AEM.00857-09 (2009). PubMed PMC

Lasch, P. et al. Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Anal. Chem.82, 8464–8475, 10.1021/ac101036s (2010). PubMed

Lasch, P. & Naumann, D. MALDI-TOF Mass Spectrometry for the Rapid Identification of Highly Pathogenic Microorganisms. Proteomics, Glycomics and Antigenicity of BSL3 and BSL4 Agents, First Edition. Edited by Jiri Stulik, Rudolf Toman, Patrick Butaye, Robert G. Ulrich. 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA., 219-212 (2011).

Minan, A. et al. Rapid identification of Burkholderia cepacia complex species including strains of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI-ToF mass spectrometry. Analyst.134, 1138–1148, 10.1039/b822669e (2009). PubMed

Martina, P. et al. Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int. J. Syst. Evol. Microbiol.68, 14–20, 10.1099/ijsem.0.002293 (2018). PubMed

Wu, H. et al. Cold-adapted Bacilli isolated from the Qinghai-Tibetan Plateau are able to promote plant growth in extreme environments. Environ. Microbiol. 010.1111/1462-2920.14722 (2019). PubMed

Tam, L. T. T. et al. Draft Genome Sequences of 59 Endospore-Forming Gram-Positive Bacteria Associated with Crop Plants Grown in Vietnam. Microbiol Resour Announc910.1128/MRA.01154-20 (2020). PubMed PMC

Karger, A. et al. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing. BMC Microbiol.12, 229, 10.1186/1471-2180-12-229 (2012). PubMed PMC

Lista, F. et al. Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS. BMC Microbiol.11, 267, 10.1186/1471-2180-11-267 (2011). PubMed PMC

Contzen, M., Hailer, M. & Rau, J. Isolation of Bacillus cytotoxicus from various commercial potato products. Int. J. Food Microbiol.174, 19–22, 10.1016/j.ijfoodmicro.2013.12.024 (2014). PubMed

Abdelli, M. et al. Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group. Microorganisms11, 2721, 10.3390/microorganisms11112721 (2023). PubMed PMC

Mostaghat, I. et al. Management of unexpected laboratory exposure to Burkholderia pseudomallei. Ann. Biol. Clin. (Paris)81, 640–644, 10.1684/abc.2023.1854 (2024). PubMed

Nozaki, Y. et al. A case of renal abscess and bacteremia caused by Burkholderia pseudomallei that was first unidentifiable by matrix-assisted laser desorption ionization-time of flight mass spectrometry in a Japanese-man. J Infect Chemother10.1016/j.jiac.2021.06.005 (2021). PubMed

Walewski, V. et al. MALDI-TOF MS contribution to diagnosis of melioidosis in a nonendemic country in three French travellers. New Microbes New Infect12, 31–34, 10.1016/j.nmni.2016.04.004 (2016). PubMed PMC

Howley, F., Abukhodair, S., de Barra, E., O’Connell, K. & McNally, C. Misidentification of Brucella melitensis as Ochrobactrum species: potential pitfalls in the diagnosis of brucellosis. BMJ Case Rep. 1710.1136/bcr-2024-260072 (2024). PubMed

Doellinger, J., Schneider, A., Stark, T., Ehling-Schulz, M. & Lasch, P. Evaluation of MALDI-ToF Mass Spectrometry for Rapid Detection of Cereulide from Bacillus cereus Cultures. bioRxiv. 10.1101/869958 (2019). PubMed PMC

Lasch, P. et al. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J. Microbiol. Methods100, 58–69, 10.1016/j.mimet.2014.02.015 (2014). PubMed

Lasch, P., Jacob, D., Klee, S. R. & Werner, G. Discriminatory Power of MALDI-TOF Mass Spectrometry for Phylogenetically Closely Related Microbial Strains. In: Applications of Mass Spectrometry in Microbiology, Plamen Demirev, Todd R. Sandrin (Eds.) Springer International Publishing, 203–234 (2016).

Dieckmann, R. et al. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy. Faraday Discuss.187, 353–375, 10.1039/c5fd00165j (2016). PubMed

Rau, J. et al. MALDI-UP–An internet platform for the exchange of MALDI-TOF mass spectra. Asp Food Contr Anim Health01 (2016).

Park, J. H., Kim, T. S., Park, H. & Kang, C. K. Delay in the diagnosis of Brucella abortus bacteremia in a nonendemic country: a case report. BMC Infect. Dis.24, 489, 10.1186/s12879-024-09377-y (2024). PubMed PMC

Suniga, P. A. P. et al. Glanders Diagnosis in an Asymptomatic Mare from Brazil: Insights from Serology, Microbiological Culture, Mass Spectrometry, and Genome Sequencing. Pathogens1210.3390/pathogens12101250 (2023). PubMed PMC

Levasseur, M. et al. Classification of Environmental Strains from Order to Genus Levels Using Lipid and Protein MALDI-ToF Fingerprintings and Chemotaxonomic Network Analysis. Microorganisms1010.3390/microorganisms10040831 (2022). PubMed PMC

Alexandre, G. et al. MSclassifR: an R Package for Supervised Classification of Mass Spectra with Machine Learning Methods. bioRxiv, 2022.2003.2014.484252 10.1101/2022.03.14.484252 (2023).

De Waele, G., Menschaert, G., Vandamme, P. & Waegeman, W. Pre-trained Maldi Transformers improve MALDI-TOF MS-based prediction. bioRxiv, 2024.2001.2018.576189 10.1101/2024.01.18.576189 (2024). PubMed

Lasch, P., Stämmler, M. & Schneider, A. Version 4.2 (20230306) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). ZenodoMarch 6, 202310.5281/zenodo.14562231 (2023).

Freiwald, A. & Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc.4, 732–742, 10.1038/nprot.2009.37 (2009). PubMed

Lasch, P. MicrobeMS - A Matlab Toolbox for Microbial Identification Based on Mass Spectrometry. https://wiki-ms.microbe-ms.com, last accessed Dec 31, 2024 (2024).

Cuenod, A., Foucault, F., Pfluger, V. & Egli, A. Factors Associated With MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics. Front Cell Infect Microbiol11, 646648, 10.3389/fcimb.2021.646648 (2021). PubMed PMC

Oberle, M. et al. The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Based Typing: Employment of Bioinformatics in a Multicenter Study. PLoS One11, e0164260, 10.1371/journal.pone.0164260 (2016). PubMed PMC

Eilers, P. H. C. & Boelens, H. F. M. Baseline Correction with Asymmetric Least Squares Smoothing. Leiden University Centre Medical Report1, 5 (2005).

Lasch, P., Jacob, D., Grunow, R., Schwecke, T. & Doellinger, J. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS for the identification of highly pathogenic bacteria. Trac-Trend Anal Chem85, Part B, 103–111 (2016).

Mesuere, B. et al. Unipept: tryptic peptide-based biodiversity analysis of metaproteome samples. J. Proteome Res.11, 5773–5780, 10.1021/pr300576s (2012). PubMed

Verschaffelt, P. et al. Unipept Visualizations: an interactive visualization library for biological data. Bioinformatics38, 562–563, 10.1093/bioinformatics/btab590 (2022). PubMed

Lasch, P., Schneider, A., Blumenscheit, C. & Doellinger, J. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries. Mol. Cell. Proteomics19, 2125–2139, 10.1074/mcp.TIR120.002061 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...