Early Vascular Aging in Children With Type 1 Diabetes and Ambulatory Normotension

. 2021 ; 9 () : 764004. [epub] 20211220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34988037

Background: Preliminary data suggest that target organ damage (TOD) and early vascular aging (EVA) may occur in children with normal blood pressure (BP). Objectives: To analyze TOD and EVA in normotensive (BP <95th percentile on ambulatory BP monitoring) type 1 diabetes children (T1D) in comparison to healthy controls (C). Subjects: 25 T1D aged 13.9 ± 2.6 years and 22 C aged 14.0 ± 3.4 years. Methods: We analyzed age- and height-related pulse wave velocity (PWV) Z-scores and expected PWV based on age, height, and mean arterial pressure (MAP). Expected vascular age based on measured PWV was calculated from pooled pediatric and adult PWV norms. Left ventricular mass index (LVMI), estimated glomerular filtration rate (eGFR), and urinary albumin/creatinine ratio (ACR) were obtained as markers of TOD. Results: T1D and C groups did not differ in anthropometry, ambulatory, LVMI, and ACR. However, median age- and height-related PWV Z-scores were higher in T1D compared to C (1.08 vs. 0.57, p = 0.006; 0.78 vs. 0.36, p = 0.02, respectively). Mean (±SD) difference between measured and expected PWV was 0.58 ± 0.57 in T1D vs. 0.22 ± 0.59 in C, p = 0.02. The mean (±SD) difference between chronological and expected vascular age was 7.53 ± 7.74 years in T1D vs. 2.78 ± 7.01 years in C, p = 0.04. Conclusion: Increased arterial stiffness and increased intraindividual differences between expected and measured PWV as well as between chronological and expected vascular age indicate that EVA may develop in T1D children even at normal ambulatory BP levels.

Zobrazit více v PubMed

Nilsson P. The J-shaped curve in secondary prevention. Hypertension. (2012) 59:8–9. 10.1161/HYPERTENSIONAHA.111.182774 PubMed DOI

Moyer V. U.S. Preventive Services Task Force. Screening for primary hypertension in children adolescents:: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. (2013) 159:613–9. 10.7326/0003-4819-159-9-201311050-00725 PubMed DOI

Tirosh A, Afek A, Rudich A, Percik R, Gordon B, Ayalon N, et al. . Progression of normotensive adolescents to hypertensive adults. Hypertension. (2010) 56:203–9. 10.1161/HYPERTENSIONAHA.109.146415 PubMed DOI

Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, et al. . Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatric Nephrol. (2006) 21:811–9. 10.1007/s00467-006-0068-8 PubMed DOI

Obermannova B, Petruzelkova L, Sulakova T, Sumnik Z. HbA1c but not diabetes duration predicts increased arterial stiffness in adolescents with poorly controlled type 1 diabetes. Pediatric Diabetes. (2017) 18:304–10. 10.1111/pedi.12385 PubMed DOI

Koskinen J, Juonala M, Dwyer T, Venn A, Petkeviciene J, Ceponiene I, et al. . Utility of different blood pressure measurement components in childhood to predict adult carotid intima-media thickness. Hypertension. (2019) 73:335–41. 10.1161/HYPERTENSIONAHA.118.12225 PubMed DOI PMC

Khoury M, Urbina E. Cardiac and vascular target organ damage in pediatric hypertension. Fronti Pediatrics. (2018) 6:148. 10.3389/fped.2018.00148 PubMed DOI PMC

Litwin M, Niemirska A, Ruzicka M, Feber J. White coat hypertension in children: not rare and not benign?. J Am Soc Hyperten. (2009) 3:416–23. 10.1016/j.jash.2009.10.002 PubMed DOI

Lurbe E, Agabiti-Rosei E, Cruickshank J, Dominiczak A, Erdine S, Hirth A, et al. . 2016 European society of hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hyperten. (2016) 34:1887–920. 10.1097/HJH.0000000000001039 PubMed DOI

Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report . Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. (2011) 128:S213–56. 10.1542/peds.2009-2107C PubMed DOI PMC

Reusz G, Cseprekal O, Temmar M, Kis E, Cherif A, Thaleb A, et al. . Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. (2010) 56:217–24. 10.1161/HYPERTENSIONAHA.110.152686 PubMed DOI

Thurn D, Doyon A, Sözeri B, Bayazit A, Canpolat N, Duzova A, et al. . Aortic pulse wave velocity in healthy children and adolescents: reference values for the vicorder device and modifying factors. Am J Hyperten. (2015) 28:1480–8. 10.1093/ajh/hpv048 PubMed DOI

Elmenhorst J, Hulpke-Wette M, Barta C, Dalla Pozza R, Springer S, Oberhoffer R. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. (2015) 238:9–16. 10.1016/j.atherosclerosis.2014.11.005 PubMed DOI

Hidvégi E, Illyés M, Benczúr B, Böcskei R, Rátgéber L, Lenkey Z, et al. . Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J Hyperten. (2012) 30:2314–21. 10.1097/HJH.0b013e328359562c PubMed DOI

Fischer D, Schreiver C, Heimhalt M, Noerenberg A, Haffner D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J Hyperten. (2012) 30:2159–67. 10.1097/HJH.0b013e3283582217 PubMed DOI

Townsend R, Wilkinson I, Schiffrin E, Avolio A, Chirinos J, Cockcroft J, et al. . Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. (2015) 66:698–722. 10.1161/HYP.0000000000000033 PubMed DOI PMC

Cunha P, Cotter J, Oliveira P, Vila I, Boutouyrie P, Laurent S, et al. . Pulse wave velocity distribution in a cohort study: from arterial stiffness to early vascular aging: from arterial stiffness to early vascular aging. J Hypertens. (2015) 33:1438–45. 10.1097/HJH.0000000000000565 PubMed DOI

Wühl E, Witte K, Soergel M, Mehls O, Schaefer F. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. (2002) 20:1995–2007. 10.1097/00004872-200210000-00019 PubMed DOI

Li Y, Wang J, Dolan E, Gao P, Guo H, Nawrot T, et al. . Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension. (2006) 47:359–64. 10.1161/01.HYP.0000200695.34024.4c PubMed DOI

Salvi P, Lio G, Labat C, Ricci E, Pannier B, Benetos A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity. J Hyperten. (2004) 22:2285–93. 10.1097/00004872-200412000-00010 PubMed DOI

Reference Values for Arterial Stiffness' Collaboration . Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J. (2010) 31:2338–50. 10.1093/eurheartj/ehq165 PubMed DOI PMC

Lopez L, Colan S, Frommelt P, Ensing G, Kendall K, Younoszai A, et al. . Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American society of echocardiography pediatric and congenital heart disease council. J Am Soc Echocardiography. (2010) 23:465–95. 10.1016/j.echo.2010.03.019 PubMed DOI

Devereux R, Alonso D, Lutas E, Gottlieb G, Campo E, Sachs I, et al. . Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. (1986) 57:450–8. 10.1016/0002-9149(86)90771-X PubMed DOI

Khoury P, Mitsnefes M, Daniels S, Kimball T. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiography. (2009) 22:709–14. 10.1016/j.echo.2009.03.003 PubMed DOI

Schwartz G, Muñoz A, Schneider M, Mak R, Kaskel F, Warady B, et al. . New equations to estimate GFR in Children with CKD. J Am Soc Nephrol. (2009) 20:629–37. 10.1681/ASN.2008030287 PubMed DOI PMC

Kidney disease: Improving global outcomes (KDIGO) CKD work group . KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. (2013) 3:1–150. 10.1038/kisup.2012.76 DOI

Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. (2019) 16:565–6. 10.1038/s41592-019-0470-3 PubMed DOI

Donahue R, Orchard T. Diabetes mellitus and macrovascular complications: an epidemiological perspective. Diabetes Care. (1992) 15:1141–55. 10.2337/diacare.15.9.1141 PubMed DOI

Šuláková T, Janda J, Cerná J, Janštová V, Šuláková A, Slaný J, et al. . Arterial HTN in children with T1DM-frequent and not easy to diagnose. Pediatric Diabetes. (2009) 10:441–8. 10.1111/j.1399-5448.2009.00514.x PubMed DOI

Bjornstad P, Donaghue K, Maahs D. Macrovascular disease and risk factors in youth with type 1 diabetes: time to be more attentive to treatment? Lancet Diabetes Endocrinol. (2018) 6:809–20. 10.1016/S2213-8587(18)30035-4 PubMed DOI PMC

Rawshani A, Sattar N, Franzén S, Rawshani A, Hattersley A, Svensson A, et al. . Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. (2018) 392:477–86. 10.1016/S0140-6736(18)31506-X PubMed DOI PMC

Dabelea D, Stafford J, Mayer-Davis E, D'Agostino R, Dolan L, Imperatore G, et al. . Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. (2017) 317:686. 10.1001/jama.2017.0686 PubMed DOI PMC

Tynjälä A, Forsblom C, Harjutsalo V, Groop P, Gordin D. Arterial Stiffness Predicts Mortality in Individuals With Type 1 Diabetes. Diabetes Care. (2020) 43:2266–2271. 10.2337/dc20-0078 PubMed DOI

Litwin M, Feber J. Origins of primary hypertension in children. Hypertension. (2020) 76:1400–9. 10.1161/HYPERTENSIONAHA.120.14586 PubMed DOI

Nilsson P, Laurent S, Cunha P, Olsen M, Rietzschel E, Franco O, et al. . Characteristics of healthy vascular ageing in pooled population-based cohort studies. J Hyperten. (2018) 36:2340–9. 10.1097/HJH.0000000000001824 PubMed DOI PMC

Alecu C, Gueguen R, Aubry C, Salvi P, Perret-Guillaume C, Ducrocq X, et al. . Determinants of arterial stiffness in an apparently healthy population over 60 years. J Human Hyperten. (2006) 20:749–56. 10.1038/sj.jhh.1002072 PubMed DOI

Wood J, Miller K, Maahs D, Beck R, DiMeglio L, Libman I, et al. . Most youth with type 1 diabetes in the T1D exchange clinic registry do not meet American diabetes association or international society for pediatric and adolescent diabetes clinical guidelines. Diabetes Care. (2013) 36:2035–7. 10.2337/dc12-1959 PubMed DOI PMC

Giannopoulou E, Doundoulakis I, Antza C, Christoforidis A, Haidich A, Kotsis V, et al. . Subclinical arterial damage in children and adolescents with type 1 diabetes: a systematic review and meta-analysis. Pediatric Diabetes. (2019) 15:1–3. 10.1111/pedi.12874 PubMed DOI

Urbina E, Isom S, Bell R, Bowlby D, D'Agostino R, Daniels S, et al. . Burden of cardiovascular risk factors over time and arterial stiffness in youth with type 1 diabetes mellitus: The SEARCH for diabetes in youth study. J Am Heart Assoc. (2019) 8:10150. 10.1161/JAHA.118.010150 PubMed DOI PMC

Bjornstad P, Pyle L, Nguyen N, Snell-Bergeon J, Bishop F, Wadwa R, et al. . Achieving International society for pediatric and adolescent diabetes and American diabetes association clinical guidelines offers cardiorenal protection for youth with type 1 diabetes. Pediatric Diabetes. (2015) 16:22–30. 10.1111/pedi.12252 PubMed DOI PMC

Shah A, Wadwa R, Dabelea D, Hamman R, D'Agostino R, Marcovina S, et al. . Arterial stiffness in adolescents and young adults with and without type 1 diabetes: the SEARCH CVD study. Pediatric Diabetes. (2015) 16:367–74. 10.1111/pedi.12279 PubMed DOI PMC

Bradley T, Slorach C, Mahmud F, Dunger D, Deanfield J, Deda L, et al. . Early changes in cardiovascular structure and function in adolescents with type 1 diabetes. Cardiovasc Diabetol. (2016) 15:351. 10.1186/s12933-016-0351-3 PubMed DOI PMC

Wojcik M, Rudzinski A, Starzyk J. Left ventricular diastolic dysfunction in adolescents with type 1 diabetes reflects the long- but not short- term metabolic control. J Pediatric Endocrinol Metab. (2010) 23:167. 10.1515/jpem.2010.167 PubMed DOI

Eltayeb A, Ahmad F, Sayed D, Osama A. Subclinical vascular endothelial dysfunctions and myocardial changes with type 1 diabetes mellitus in children and adolescents. Pediatric Cardiol. (2014) 35:965–74. 10.1007/s00246-014-0883-9 PubMed DOI

Kis E, Cseprekál O, Kerti A, Salvi P, Benetos A, Tisler A, et al. . Measurement of pulse wave velocity in children and young adults: a comparative study using three different devices. Hyperten Res. (2011) 34:1197–202. 10.1038/hr.2011.103 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...