A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26068930
PubMed Central
PMC4466021
DOI
10.1371/journal.pone.0129037
PII: PONE-D-14-51308
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- podnebí * MeSH
- shluková analýza MeSH
- teoretické modely * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12-BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/.
Zobrazit více v PubMed
Kohler P, Bintanja R, Fischer H, Joos F, Knutti R, Lohmann G, et al. What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews. 2010;29(1–2):129–45. 10.1016/j.quascirev.2009.09.026 . DOI
Peltier WR. Postglacial coastal evolution: Ice-ocean-solid Earth interactions in a period of rapid climate change. Coastline Changes: Interrelation of Climate and Geological Processes. 2007;426:5–28. .
Elith J, Kearney M, Phillips S. The art of modelling range-shifting species. Methods in Ecology and Evolution. 2010;1:330–42.
Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecological Modelling. 2000;135(2–3):147–86.
Svenning J- C, Fløjgaard C, Marske KA, Nógues-Bravo D, Normand S. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews. 2011;30(21–22):2930–47.
Varela S, Lobo JM, Hortal J. Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology. 2011;310:451–63.
Lima-Ribeiro MS, Varela S, Nogués-Bravo D, Diniz-Filho JAF. Potential Suitable Areas of Giant Ground Sloths Dropped Before its Extinction in South America: the Evidences from Bioclimatic Envelope Modeling. Natureza & Conservação. 2012;10(2):145–51.
Varela S. Aplicación de los modelos de distribución de especies hacia el pasado. Análisis de la distribución y extinción de las poblaciones europeas de hiena manchada (Crocuta crocuta (Erxleben, 1777)) durante el Pleistoceno. Madrid: Universidad Autónoma de Madrid; 2011.
Varela S, Lobo JM, Rodríguez J, Batra P. Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quaternary Science Reviews. 2010;29(17–18):2027–35.
Varela S, Lobo JM, Rodríguez J. Influencia de los cambios climáticos en la extinción de la hiena manchada (Crocuta crocuta Erxleben, 1777) en la Península Ibérica. Zona Arqueológica. 2010;13:68–75.
Barrientos R, Kvist L, Barbosa A, Valera F, Khoury F, Varela S, et al. Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling. Molecular Ecology. 2014;23(2):390–407. 10.1111/mec.12588 PubMed DOI
de Lima NE, Lima-Ribeiro MS, Tinoco CF, Terribile LC, Collevatti RG. Phylogeography and ecological niche modelling, coupled with the fossil pollen record, unravel the demographic history of a Neotropical swamp palm through the Quaternary. Journal of Biogeography. 2014;41(4):673–86. 10.1111/jbi.12269 PubMed DOI
McGuffie K, Henderson-Sellers A. A Climate Modelling Primer. Oxford: John Wiley & Sons; 2014.
Stocker TF, Qin D, Plattner G- K, Tignor M, Allen SK, Boschung J, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess¬ment Report of the Intergovernmental Panel on Climate Change Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press; 2013.
Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design Bulletin of the American Meteorological Society. 2012;93:485–98.
Pierce D. ncdf: Interface to Unidata netCDF data files. R package version 1.6.8.: http://CRAN.R-project.org/package=ncdf; 2014.
Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. Guidelines for use of climatic scenarios developed from statistical downscaling methods. Intergovernmental Panel on Climate Change, 2004.
Pebesma EJ. Multivariable geostatistics in S: the gstat package. Computers & Geosciences. 2004;30:683–91.
Hartkamp AD, Beurs KD, Stein A, White. JW. Interpolation Techniques for Climate Variables. Mexico, D.F.: CIMMYT; 1999.
Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P. A knowledge-based approach to the statistical mapping of climate Climate Research. 2002;22:99–113.
New M, Lister D, Hulme M, Makin I. A high-resolution data set of surface climate over global land areas. Climate Research. 2002;21:1:25.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–78.
Hijmans RJ, Graham CH. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology. 2006;12(12):2272–81. 10.1111/j.1365-2486.2006.01256.x . DOI
Plate T, Heiberger R. abind: Combine multi-dimensional arrays. R package version 1.4–0. http://CRAN.R-project.org/package=abind. 2011.
R-Core-Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 2013.
Hijmans RJ, Etten Jv. raster: Geographic data analysis and modeling. R package version 2.1–25. http://CRAN.R-project.org/package=raster; 2013.
Bivand R, Lewin-Koh N. maptools: Tools for reading and handling spatial objects. R package version 0.8–27. http://CRAN.R-project.org/package=maptools. 2013.
Lucas A. amap: Another Multidimensional Analysis Package. R package version 0.8–12. ed: http://CRAN.R-project.org/package=amap; 2014.
Roberts DR, Hamann A. Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. Global Ecology and Biogeography. 2012;21(2):121–33. 10.1111/j.1466-8238.2011.00657.x . DOI
Collevatti RG, Terribile LC, de Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, et al. Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography. 2012;40(2):345–58.
Abellán P, Benetti CJ, Angus RB, Ribera I. A review of Quaternary range shifts in European aquatic Coleoptera. Global Ecology and Biogeography. 2011;20(1):87–100.
Varela S, Anderson RP, García-Valdés R, Fernández-González F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models Ecography. 2014;37:001–8.
Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 2009;32(1):66–77. 10.1111/j.1600-0587.2008.05505.x . DOI
Shin SI, Liu Z, Otto-Bliesner B, Brady E, Kutzbach J, Harrison S. A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dynamics. 2003;20(2–3):127–51.