Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26084797
PubMed Central
PMC4477422
DOI
10.1186/s13071-015-0949-4
PII: 10.1186/s13071-015-0949-4
Knihovny.cz E-zdroje
- MeSH
- cestodózy epidemiologie parazitologie veterinární MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- genom u helmintů * MeSH
- nemoci ryb epidemiologie parazitologie MeSH
- operon MeSH
- ploštěnci klasifikace genetika izolace a purifikace MeSH
- RNA helmintů genetika MeSH
- RNA ribozomální genetika MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA helmintů MeSH
- RNA ribozomální MeSH
BACKGROUND: The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. METHODS: Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. RESULTS: We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. CONCLUSIONS: Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and large-scale molecular epidemiology and disease ecology studies based on the most accessible life-cycle stages of eye flukes.
Zobrazit více v PubMed
Chappell LH, Hardie LJ, Secombes CJ. Diplostomiasis: the disease and host-parasite interactions. In: Pike AW, Lewis JW, editors. Parasitic diseases of fish. Tresaith, Dyfed, UK: Samara Publishing Ltd; 1994. pp. 59–86.
Rauch G, Kalbe M, Reusch TBH. How a complex life cycle can improve a parasite’s sex life. J Evol Biol. 2005;18:1069–75. doi: 10.1111/j.1420-9101.2005.00895.x. PubMed DOI
Louhi K-R, Karvonen A, Rellstab C, Jokela J. Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infect Genet Evol. 2010;10:1271–7. doi: 10.1016/j.meegid.2010.08.013. PubMed DOI
Kalbe M, Kurtz J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology. 2006;132:105–16. doi: 10.1017/S0031182005008681. PubMed DOI
Karvonen A. Chapter 15. Diplostomum spathaceum and related species. In: Woo PTK, Buchmann K, editors. Fish parasites: pathobiology and protection. Wallingford, UK: CAB International; 2012. pp. 260–9.
Voutilainen A, Valdez H, Karvonen A, Kortet R, Kuukka H, Peuhkuri N, et al. Infectivity of trematode eye flukes in farmed salmonid fish–effects of parasite and host origins. Aquaculture. 2009;293:108–12. doi: 10.1016/j.aquaculture.2009.04.006. DOI
Seppälä O, Karvonen A, Valtonen ET. Eye fluke-induced cataracts in natural fish populations: is there potential for host manipulation? Parasitology. 2011;138:209–14. doi: 10.1017/S0031182010001228. PubMed DOI
Georgieva S, Soldánová M, Pérez-del-Olmo A, Dangel DR, Sitko J, Sures B, et al. Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. Int J Parasitol. 2013;43:57–72. doi: 10.1016/j.ijpara.2012.10.019. PubMed DOI
Niewiadomska K, Laskowski Z. Systematic relationships among six species of Diplostomum Nordmann, 1832 (Digenea) based on morphological and molecular data. Acta Parasitol. 2002;47:20–8.
Galazzo DE, Dayanandan S, Marcogliese DJ, McLaughlin JD. Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can J Zool. 2002;80:2207–17. doi: 10.1139/z02-198. DOI
Rellstab C, Louhi K-R, Karvonen A, Jokela J. Analysis of trematode parasite communities in fish eye lenses by pyrosequencing of naturally pooled DNA. Infect Genet Evol. 2011;11:1276–86. doi: 10.1016/j.meegid.2011.04.018. PubMed DOI
Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour. 2009;9:75–82. doi: 10.1111/j.1755-0998.2009.02634.x. PubMed DOI
Locke SA, McLaughlin JD, Dayanandan S, Marcogliese DJ. Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. Int J Parasitol. 2010;40:333–43. doi: 10.1016/j.ijpara.2009.08.012. PubMed DOI
Blasco-Costa I, Faltýnková A, Georgieva S, Skírnisson K, Scholz T, Kostadinova A. Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. Int J Parasitol. 2014;44:703–15. doi: 10.1016/j.ijpara.2014.04.009. PubMed DOI
Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2007;134:713–22. doi: 10.1017/S0031182006001934. PubMed DOI
Jia W-Z, Yan H-B, Guo A-J, Zhu X-Q, Wang Y-C, Shi W-G, et al. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics. 2010;11:447. doi: 10.1186/1471-2164-11-447. PubMed DOI PMC
Webster BL, Littlewood DTJ. Mitochondrial gene order change in Schistosoma (Platyhelminthes: Digenea: Schistosomatidae) Int J Parasitol. 2012;42:313–21. doi: 10.1016/j.ijpara.2012.02.001. PubMed DOI
Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads - a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41:e129. doi: 10.1093/nar/gkt371. PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:W686–9. doi: 10.1093/nar/gki366. PubMed DOI PMC
Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–5. doi: 10.1093/bioinformatics/btm573. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–9.
Kane RA, Rollinson D. Comparison of the intergenic spacers and 3′ end regions of the large subunit (28S) ribosomal RNA gene from three species of Schistosoma. Parasitology. 1998;117:235–42. doi: 10.1017/S0031182098003059. PubMed DOI
Zhao G-H, Blair D, Li X-Y, Li J, Lin R-Q, Zou F-C, et al. The ribosomal intergenic spacer (IGS) region in Schistosoma japonicum: structure and comparisons with related species. Infect Genet Evol. 2011;11:610–7. doi: 10.1016/j.meegid.2011.01.015. PubMed DOI
Mullineux S-T, Lafontaine DLJ. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie. 2012;94:1521–32. doi: 10.1016/j.biochi.2012.02.001. PubMed DOI
Telford MJ, Herniou EA, Russell RB, Littlewood DTJ. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci U S A. 2000;97:11359–64. doi: 10.1073/pnas.97.21.11359. PubMed DOI PMC
Rota-Stabelli O, Yang Z, Telford MJ. MtZoa: a general mitochondrial amino acid substitutions model for animal evolutionary studies. Mol Phylogenet Evol. 2009;52:268–72. doi: 10.1016/j.ympev.2009.01.011. PubMed DOI
Adachi J, Hasegawa M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol. 1996;42:459–68. doi: 10.1007/BF02498640. PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? J Comput Biol. 2010;17:337–54. doi: 10.1089/cmb.2009.0179. PubMed DOI
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9. PubMed
Hahn C, Fromm B, Bachmann L. Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of ecto- and endoparastic Neodermata. Genome Biol Evol. 2014;6:1105–17. doi: 10.1093/gbe/evu078. PubMed DOI PMC
Zarowiecki MZ, Huyse T, Littlewood DTJ. Making the most of mitochondrial genomes - markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea) Int J Parasitol. 2007;37:1401–18. doi: 10.1016/j.ijpara.2007.04.014. PubMed DOI
Jia W, Yan H, Lou Z, Ni X, Dyachenko V, Li H, et al. Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop. 2012;123:154–63. doi: 10.1016/j.actatropica.2012.04.006. PubMed DOI
Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50. doi: 10.1111/j.1365-294X.2012.05470.x. PubMed DOI
Huver JR, Koprivnikar J, Johnson PTJ, Whyard S. Development and application of an eDNA methods to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecol Appl. (in press). PubMed PMC
Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda) Int J Parasitol. 2003;33:733–55. doi: 10.1016/S0020-7519(03)00049-3. PubMed DOI
Cribb TH, Bray RA, Olson PD, Littlewood DTJ. Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasit. 2003;54:197–254. PubMed
Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol. 2006;39:452–67. doi: 10.1016/j.ympev.2005.12.012. PubMed DOI
Other Schistosomatoidea and Diplostomoidea