Arabinose and protocatechuate catabolism genes are important for growth of Rhizobium leguminosarum biovar viciae in the pea rhizosphere
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/C517025/2
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/00000012
Biotechnology and Biological Sciences Research Council - United Kingdom
P19980
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
26166901
PubMed Central
PMC4495286
DOI
10.1007/s11104-015-2389-5
PII: 2389
Knihovny.cz E-zdroje
- Klíčová slova
- Competitive nodule infection, Legume nodulation, Pisum, Rhizosphere fitness,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: To form nitrogen-fixing nodules on pea roots, Rhizobium leguminosarum biovar viciae must be competitive in the rhizosphere. Our aim was to identify genes important for rhizosphere fitness. METHODS: Signature-tagged mutants were screened using microarrays to identify mutants reduced for growth in pea rhizospheres. Candidate mutants were assessed relative to controls for growth in minimal medium, growth in pea rhizospheres and for infection of peas in mixed inoculants. Mutated genes were identified by DNA sequencing and confirmed by transduction. RESULTS: Of 5508 signature-tagged mutants, microarrays implicated 50 as having decreased rhizosphere fitness. Growth tests identified six mutants with rhizosphere-specific phenotypes. The mutation in one of the genes (araE) was in an arabinose catabolism operon and blocked growth on arabinose. The mutation in another gene (pcaM), encoding a predicted solute binding protein for protocatechuate and hydroxybenzoate uptake, decreased growth on protocatechuate. Both mutants were decreased for nodule infection competitiveness with mixed inoculants, but nodulated peas normally when inoculated alone. Other mutants with similar phenotypes had mutations predicted to affect secondary metabolism. CONCLUSIONS: Catabolism of arabinose and protocatechuate in the pea rhizosphere is important for competitiveness of R.l. viciae. Other genes predicted to be involved in secondary metabolism are also important.
Department of Molecular Microbiology John Innes Centre Norwich Research Park Norwich NR4 7UH UK
School of Biological Sciences University of Reading Reading RG6 6AJ UK
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Barquist L, Boinett CJ, Cain AK. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol. 2013;10:1161–1169. doi: 10.4161/rna.24765. PubMed DOI PMC
Barr M, East AK, Leonard M, Mauchline TH, Poole PS. In vivo expression technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34 expressed in the rhizosphere. FEMS Microbiol Lett. 2008;282:219–227. doi: 10.1111/j.1574-6968.2008.01131.x. PubMed DOI
Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974;84:188–198. doi: 10.1099/00221287-84-1-188. PubMed DOI
Bourion V, Laguerre G, Depret G, Voisin AS, Salon C, Duc G. Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea. Ann Bot. 2007;100:589–598. doi: 10.1093/aob/mcm147. PubMed DOI PMC
BuchananWollaston V. Generalized transduction in Rhizobium leguminosarum. J Gen Microbiol. 1979;112:135–142. doi: 10.1099/00221287-112-1-135. DOI
Casavant NC, Beattie GA, Phillips GJ, Halverson LJ. Site-specific recombination-based genetic system for reporting transient or low-level gene expression. Environ Microbiol. 2002;68:3588–3596. doi: 10.1128/AEM.68.7.3588-3596.2002. PubMed DOI PMC
Chen WP, Kuo TT. A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res. 1993;21:2260. doi: 10.1093/nar/21.9.2260. PubMed DOI PMC
Das S, Noe JC, Paik S, Kitten T. An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods. 2005;63:89–94. doi: 10.1016/j.mimet.2005.02.011. PubMed DOI
DeLorenzo V, Fernandez S, Herrero M, Jakubzik U, Timmis KN. Engineering of alkyl-responsive and haloaromatic-responsive gene-expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene. 1993;130:41–46. doi: 10.1016/0378-1119(93)90344-3. PubMed DOI
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev. 2010;34:150–170. doi: 10.1111/j.1574-6976.2009.00205.x. PubMed DOI
Fahraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass technique. J Gen Microbiol. 1957;16:374–381. doi: 10.1099/00221287-16-2-374. PubMed DOI
Gao MS, Teplitski M. RIVET - A tool for in vivo analysis of symbiotically relevant gene expression in Sinorhizobium meliloti. Mol Plant Microbe Interact. 2008;21:162–170. doi: 10.1094/MPMI-21-2-0162. PubMed DOI
Johnston AWB, Beringer JE. Identification of the Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol. 1975;87:343–350. doi: 10.1099/00221287-87-2-343. PubMed DOI
Kamimura N, Takamura K, Hara H, Kasai D, Natsume R, Senda T, Katayama Y, Fukuda M, Masai E. Regulatory system of the protocatechuate 4,5-cleavage pathway genes essential for lignin downstream catabolism. J Bacteriol. 2010;192:3394–3405. doi: 10.1128/JB.00215-10. PubMed DOI PMC
MacLean AA, MacPherson G, Aneja P, Finan TM. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microbiol. 2006;72:5403–5413. doi: 10.1128/AEM.00580-06. PubMed DOI PMC
MacLean AM, Anstey MI, Finan TM. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti. J Bacteriol. 2008;190:1237–1246. doi: 10.1128/JB.01456-07. PubMed DOI PMC
MacLean AM, Haerty W, Golding GB, Finan TM. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology. 2011;157:2522–2533. doi: 10.1099/mic.0.050542-0. PubMed DOI
Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O’Gara F. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A. 2005;102:17454–17459. doi: 10.1073/pnas.0506407102. PubMed DOI PMC
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A. 2006;103:17933–17938. doi: 10.1073/pnas.0606673103. PubMed DOI PMC
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A. Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol. 2006;72:4329–4337. doi: 10.1128/AEM.03072-05. PubMed DOI PMC
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Mol Plant Microbe Interact. 2008;21:219–231. doi: 10.1094/MPMI-21-2-0219. PubMed DOI
Poole PS, Schofield NA, Reid CJ, Drew EM, Walshaw DL. Identification of chromosomal genes located downstream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of Rhizobium leguminosarum. Microbiology. 1994;140:2797–2809. doi: 10.1099/00221287-140-10-2797. PubMed DOI
Poysti NJ, Loewen ED, Wang Z, Oresnik IJ. Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology. 2007;153:727–736. doi: 10.1099/mic.0.29148-0. PubMed DOI
Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol. 2011;12:R106. doi: 10.1186/gb-2011-12-10-r106. PubMed DOI PMC
Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sanchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O’Gara F, Martin M, Rivilla R. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 2013;14:54. doi: 10.1186/1471-2164-14-54. PubMed DOI PMC
Reeve WG, Brau L, Castelli J, Garau G, Sohlenkamp C, Geiger O, Dilworth MJ, Glenn AR, Howieson JG, Tiwaril RP. The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions. Microbiology. 2006;152:3049–3059. doi: 10.1099/mic.0.28764-0. PubMed DOI
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor; 1989.
Silby MW, Cerdeno-Tarraga AM, Vernikos GS, et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009;10:R51. doi: 10.1186/gb-2009-10-5-r51. PubMed DOI PMC
Tett AJ, Karunakaran R, Poole PS. Characterisation of SalRAB a salicylic-acid-inducible positively-regulated efflux System of Rhizobium leguminosarum bv. viciae 3841. PLoS One. 2014;9:e103647. doi: 10.1371/journal.pone.0103647. PubMed DOI PMC
Varivarn K, Champa LA, Silby MW, Robleto EA. Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 2013;13:92. doi: 10.1186/1471-2180-13-92. PubMed DOI PMC
Watanabe S, Kodaki T, Makino K. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. J Biol Chem. 2006;281:2612–2623. doi: 10.1074/jbc.M506477200. PubMed DOI
Watanabe S, Yamada M, Ohtsu I, Makino K. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. J Biol Chem. 2007;282:6685–6695. doi: 10.1074/jbc.M611057200. PubMed DOI
Williams A, Wilkinson A, Krehenbrink M, Russo DM, Zorreguieta A, Downie JA. Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J Bacteriol. 2008;190:4706–4715. doi: 10.1128/JB.01694-07. PubMed DOI PMC
Wong CM, Dilworth MJ, Glenn AR. Evidence for two uptake systems in Rhizobium leguminosarum for hydroxy-aromatic compounds metabolized by the 3-oxoadipate pathway. Arch Microbiol. 1991;156:385–391. doi: 10.1007/BF00248715. DOI
Young JP, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 2006;7:R34. doi: 10.1186/gb-2006-7-4-r34. PubMed DOI PMC
Microbiome specificity and fluxes between two distant plant taxa in Iberian forests