• This record comes from PubMed

A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miyamotoi and Borrelia burgdorferi sensu lato

. 2016 Feb ; 44 (1) : 47-55. [epub] 20150714

Language English Country Germany Media print-electronic

Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 26168860
DOI 10.1007/s15010-015-0820-8
PII: 10.1007/s15010-015-0820-8
Knihovny.cz E-resources

PURPOSE: For simultaneous detection of Borrelia miyamotoi (relapsing fever spirochete) and Borrelia burgdorferi sensu lato, we have developed a duplex real-time PCR targeting the flagellin gene (flaB; p41), a locus frequently used in routine diagnostic PCR for B. burgdorferi s.l. detection. METHODS: Primers and probes were designed using multiple alignments of flaB sequences of B. miyamotoi and B. burgdorferi s.l. species. The sensitivity and specificity of primers and probes were determined using serial dilutions (ranging from 10(4) to 10(-1)) of B. miyamotoi and B. burgdorferi s.l. DNA and of several species of relapsing fever spirochetes. Conventional PCR on recG and glpQ and sequencing of p41 PCR products were used to confirm the species assignment. RESULTS: The detection limit of both singleplex and duplex PCR was 10 genome equivalents except for B. spielmanii and two B. garinii genotypes which showed a detection limit of 10(2) genome equivalents. There was no cross reactivity of the B. miyamotoi primers/probes with B. burgdorferi s.l. DNA, while the B. burgdorferi s.l. primer/probe generated a signal with B. hermsii DNA. Out of 2341 Ixodes ricinus ticks from Germany and Slovakia that were screened simultaneously for the presence of B. miyamotoi and B. burgdorferi s.l., 52 were positive for B. miyamotoi and 276 for B. burgdorferi s.l., denoting an average prevalence of 2.2% for B. miyamotoi and 11.8% for B. burgdorferi s.l., and B. miyamotoi DNA was also detectable by PCR using artificial clinical samples. CONCLUSION: The duplex real-time PCR developed here represents a method that permits simultaneous detection and differentiation of B. burgdorferi s.l. and B. miyamotoi in environmental and potentially clinical samples.

See more in PubMed

Emerg Infect Dis. 2014 Oct;20(10):1678-82 PubMed

FEMS Microbiol Lett. 1995 Dec 15;134(2-3):255-8 PubMed

Vector Borne Zoonotic Dis. 2001 Spring;1(1):21-34 PubMed

Clin Microbiol Infect. 2001 Sep;7(9):461-9 PubMed

N Engl J Med. 2013 Jan 17;368(3):291-3 PubMed

J Clin Microbiol. 2002 Sep;40(9):3308-12 PubMed

Emerg Infect Dis. 2011 Oct;17(10):1816-23 PubMed

J Clin Microbiol. 2000 Jun;38(6):2128-33 PubMed

Infection. 2011 Feb;39(1):35-40 PubMed

Vector Borne Zoonotic Dis. 2006 Spring;6(1):103-12 PubMed

Zoonoses Public Health. 2015 Aug;62(5):331-3 PubMed

Parasitology. 2003 Jan;126(Pt 1):11-20 PubMed

Infection. 2012 Dec;40(6):695-7 PubMed

J Med Entomol. 2006 Jul;43(4):737-42 PubMed

Emerg Infect Dis. 2014 Aug;20(8):1391-3 PubMed

Emerg Infect Dis. 2004 Sep;10(9):1661-4 PubMed

PLoS One. 2008;3(12):e4002 PubMed

Clin Microbiol Infect. 2015 Jul;21(7):631-9 PubMed

Lancet. 2013 Aug 17;382(9892):658 PubMed

PLoS One. 2012;7(12):e51914 PubMed

Emerg Infect Dis. 2003 Jun;9(6):697-701 PubMed

J Clin Pathol. 1991 Jul;44(7):610-1 PubMed

Ticks Tick Borne Dis. 2015 Mar;6(2):181-4 PubMed

Parasit Vectors. 2012 Nov 21;5:268 PubMed

J Med Entomol. 2007 Mar;44(2):303-7 PubMed

Clin Microbiol Rev. 2005 Jul;18(3):484-509 PubMed

N Engl J Med. 2013 Jan 17;368(3):240-5 PubMed

Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18159-64 PubMed

Vector Borne Zoonotic Dis. 2013 Feb;13(2):92-7 PubMed

Brief Bioinform. 2004 Jun;5(2):150-63 PubMed

Appl Environ Microbiol. 2009 Aug;75(16):5410-6 PubMed

Jpn J Infect Dis. 2004 Dec;57(6):229-35 PubMed

PLoS One. 2014 Aug 11;9(8):e104532 PubMed

J Med Entomol. 2005 Nov;42(6):1057-62 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...