A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miyamotoi and Borrelia burgdorferi sensu lato
Language English Country Germany Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
26168860
DOI
10.1007/s15010-015-0820-8
PII: 10.1007/s15010-015-0820-8
Knihovny.cz E-resources
- Keywords
- Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Real-time PCR,
- MeSH
- Borrelia classification genetics MeSH
- DNA Primers genetics MeSH
- Flagellin genetics MeSH
- Ixodes microbiology MeSH
- Real-Time Polymerase Chain Reaction methods MeSH
- Humans MeSH
- Multiplex Polymerase Chain Reaction methods MeSH
- Oligonucleotide Probes genetics MeSH
- Sensitivity and Specificity MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Germany MeSH
- Slovakia MeSH
- Names of Substances
- DNA Primers MeSH
- Flagellin MeSH
- Oligonucleotide Probes MeSH
PURPOSE: For simultaneous detection of Borrelia miyamotoi (relapsing fever spirochete) and Borrelia burgdorferi sensu lato, we have developed a duplex real-time PCR targeting the flagellin gene (flaB; p41), a locus frequently used in routine diagnostic PCR for B. burgdorferi s.l. detection. METHODS: Primers and probes were designed using multiple alignments of flaB sequences of B. miyamotoi and B. burgdorferi s.l. species. The sensitivity and specificity of primers and probes were determined using serial dilutions (ranging from 10(4) to 10(-1)) of B. miyamotoi and B. burgdorferi s.l. DNA and of several species of relapsing fever spirochetes. Conventional PCR on recG and glpQ and sequencing of p41 PCR products were used to confirm the species assignment. RESULTS: The detection limit of both singleplex and duplex PCR was 10 genome equivalents except for B. spielmanii and two B. garinii genotypes which showed a detection limit of 10(2) genome equivalents. There was no cross reactivity of the B. miyamotoi primers/probes with B. burgdorferi s.l. DNA, while the B. burgdorferi s.l. primer/probe generated a signal with B. hermsii DNA. Out of 2341 Ixodes ricinus ticks from Germany and Slovakia that were screened simultaneously for the presence of B. miyamotoi and B. burgdorferi s.l., 52 were positive for B. miyamotoi and 276 for B. burgdorferi s.l., denoting an average prevalence of 2.2% for B. miyamotoi and 11.8% for B. burgdorferi s.l., and B. miyamotoi DNA was also detectable by PCR using artificial clinical samples. CONCLUSION: The duplex real-time PCR developed here represents a method that permits simultaneous detection and differentiation of B. burgdorferi s.l. and B. miyamotoi in environmental and potentially clinical samples.
Bavarian Health and Food Safety Authority Veterinärstr 2 85764 Oberschleissheim Germany
German National Reference Centre for Borrelia Veterinärstr 2 85764 Oberschleissheim Germany
Institute of Zoology Slovak Academy of Sciences Dúbravská cesta 9 84506 Bratislava Slovakia
University of Veterinary and Pharmaceutical Sciences Palackého 1 3 612 42 Brno Czech Republic
Zoology Parasitology Ruhr University Bochum Universitätsstr 150 44780 Bochum Germany
See more in PubMed
Emerg Infect Dis. 2014 Oct;20(10):1678-82 PubMed
FEMS Microbiol Lett. 1995 Dec 15;134(2-3):255-8 PubMed
Vector Borne Zoonotic Dis. 2001 Spring;1(1):21-34 PubMed
Clin Microbiol Infect. 2001 Sep;7(9):461-9 PubMed
N Engl J Med. 2013 Jan 17;368(3):291-3 PubMed
J Clin Microbiol. 2002 Sep;40(9):3308-12 PubMed
Emerg Infect Dis. 2011 Oct;17(10):1816-23 PubMed
J Clin Microbiol. 2000 Jun;38(6):2128-33 PubMed
Infection. 2011 Feb;39(1):35-40 PubMed
Vector Borne Zoonotic Dis. 2006 Spring;6(1):103-12 PubMed
Zoonoses Public Health. 2015 Aug;62(5):331-3 PubMed
Parasitology. 2003 Jan;126(Pt 1):11-20 PubMed
Infection. 2012 Dec;40(6):695-7 PubMed
J Med Entomol. 2006 Jul;43(4):737-42 PubMed
Emerg Infect Dis. 2014 Aug;20(8):1391-3 PubMed
Emerg Infect Dis. 2004 Sep;10(9):1661-4 PubMed
PLoS One. 2008;3(12):e4002 PubMed
Clin Microbiol Infect. 2015 Jul;21(7):631-9 PubMed
Lancet. 2013 Aug 17;382(9892):658 PubMed
PLoS One. 2012;7(12):e51914 PubMed
Emerg Infect Dis. 2003 Jun;9(6):697-701 PubMed
J Clin Pathol. 1991 Jul;44(7):610-1 PubMed
Ticks Tick Borne Dis. 2015 Mar;6(2):181-4 PubMed
Parasit Vectors. 2012 Nov 21;5:268 PubMed
J Med Entomol. 2007 Mar;44(2):303-7 PubMed
Clin Microbiol Rev. 2005 Jul;18(3):484-509 PubMed
N Engl J Med. 2013 Jan 17;368(3):240-5 PubMed
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18159-64 PubMed
Vector Borne Zoonotic Dis. 2013 Feb;13(2):92-7 PubMed
Brief Bioinform. 2004 Jun;5(2):150-63 PubMed
Appl Environ Microbiol. 2009 Aug;75(16):5410-6 PubMed
Jpn J Infect Dis. 2004 Dec;57(6):229-35 PubMed
PLoS One. 2014 Aug 11;9(8):e104532 PubMed
J Med Entomol. 2005 Nov;42(6):1057-62 PubMed