Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26172952
PubMed Central
PMC4501783
DOI
10.1371/journal.pone.0132683
PII: PONE-D-14-57182
Knihovny.cz E-resources
- MeSH
- Annexins genetics metabolism MeSH
- Chlorophyll metabolism MeSH
- Photosynthesis MeSH
- Photosystem II Protein Complex metabolism MeSH
- Stress, Physiological MeSH
- Plants, Genetically Modified MeSH
- Droughts MeSH
- Oxidative Stress MeSH
- Gene Expression Regulation, Plant MeSH
- Recombinant Proteins genetics metabolism MeSH
- Genes, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Solanum tuberosum genetics growth & development metabolism MeSH
- Light MeSH
- Xanthophylls metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Annexins MeSH
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
- Recombinant Proteins MeSH
- Plant Proteins MeSH
- Xanthophylls MeSH
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
See more in PubMed
Bhargava S, Sawant K. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 2013; 132:21–32.
Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010; 61:443–462. 10.1146/annurev-arplant-042809-112116 PubMed DOI
Reynolds M, Tuberosa R. Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol. 2008;11: 171–179. 10.1016/j.pbi.2008.02.005 PubMed DOI
Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134: 1683–1696. PubMed PMC
Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11: 15–19. PubMed
Asselbergh B De Vieesschauwer D Hofte M Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol Plant Microbe Int. 2008;21: 709–719. PubMed
Tripathy BC, Oelmuller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7: 1621–1633. 10.4161/psb.22455 PubMed DOI PMC
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling. J Exp Bot. 2014;65: 1229–1240. 10.1093/jxb/ert375 PubMed DOI
Schmidt R, Schippers JHM (2015) ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta 10.1016/j.bbagen.2014.12.020 PubMed DOI
Foyer CH, Noctor G. Redox signaling in plants. Antioxid Redox Signal. 2013;18: 2087–2090. 10.1089/ars.2013.5278 PubMed DOI
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141: 391–396. PubMed PMC
Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011;155: 93–100. 10.1104/pp.110.166181 PubMed DOI PMC
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012; 10.1155/2012/217037 DOI
Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 2003;22: 2623–2633. PubMed PMC
Voss I, Sunil B, Scheibe R, Raghavendra A.) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol (Stuttg). 2013;15: 713–722. PubMed
Clark GB, Morgan RO, Fernandez MP, Roux SJ. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol. 2012;196: 695–712. 10.1111/j.1469-8137.2012.04308.x PubMed DOI
Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, et al. Annexins: multifunctional components of growth and adaptation. J Exp Bot. 2008;59: 533–44. 10.1093/jxb/erm344 PubMed DOI
Laohavisit A, Brown AT, Cicuta P, Davies JM. Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiol. 2010;152: 1824–1829. 10.1104/pp.109.145458 PubMed DOI PMC
Laohavisit A, Davies JM. Annexins. New Phytol. 2010;189: 40–53. 10.1111/j.1469-8137.2010.03533.x PubMed DOI
Konopka-Postupolska D, Clark G, Hofmann A. Structure, function and membrane interactions of plant annexins: An update. Plant Sci. 2011;181: 230–241. 10.1016/j.plantsci.2011.05.013 PubMed DOI
Gidrol X, Sabelli PA, Fern YS, Kush AK. Annexin-like protein from Arabidopsis thaliana rescues delta oxyR mutant of Escherichia coli from H2O2 stress. Proc Natl Acad Sci USA 1996;93: 11268–11273. PubMed PMC
Laohavisit A, Richards SL, Shabala L, Chen C, Colaco RD, Swarbreck SM, et al. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin 1. Plant Physiol. 2013;163: 253–262. 10.1104/pp.113.217810 PubMed DOI PMC
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, et al. The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol. 2009;150: 1394–1410. 10.1104/pp.109.135228 PubMed DOI PMC
Davies JM. Annexin-mediated calcium signalling in plants. Plants 2014;3: 128–140. PubMed PMC
Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem. 2008;46: 1019–1030. 10.1016/j.plaphy.2008.07.006 PubMed DOI
Divya K, Jami SK, Kirti PB. Constitutive expression of mustard annexin, BjAnn1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol Biol. 2010;73: 293–308. 10.1007/s11103-010-9615-6 PubMed DOI
Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, et al. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 2012;235: 1271–1288. 10.1007/s00425-011-1573-y PubMed DOI
Sareddy GR, Divya K, Kirti PB, Prakash Babu P. Novel antiproliferative and antioxidant role of BJANN1, a mustard annexin protein in human glioblastoma cell lines. J Cancer Sci Ther. 2013;5: 256–263,
Dalal A, Vishwakarma A, Singh NK, Gudla T, Bhattacharyya MK, Padmasree K, et al. Attenuation of hydrogen peroxide-mediated oxidative stress by Brassica juncea annexin-3 counteracts thiol-specific antioxidant (TSA1) deficiency in Saccharomyces cerevisiae . FEBS Lett. 2014;588: 584–593. 10.1016/j.febslet.2014.01.006 PubMed DOI
Dalal A, Kumar A, Yadav D, Gudla T, Viehhauser A, Dietz KJ, et al. Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Sci. 2014;219–220: 9–18. 10.1016/j.plantsci.2013.12.016 PubMed DOI
Hoekstra AY, Hung PQ (2005) Globalisation of water resources: international virtual water flows in relation to crop trade. Global Environ Change 15: 45–56.
Salekdeh GH, Reynolds M, Bennett J, Boyer J. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci. 2009;14: 488–496. 10.1016/j.tplants.2009.07.007 PubMed DOI
Jefferies R, Mackerron D. Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Ann Appl Biol. 2008;122: 105–122.
Hassanpanah D. Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Res. 2010;53: 383–392.
Monneveux P, Ramírez DA, Pino MT. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Sci. 2013;205–206: 76–86. 10.1016/j.plantsci.2013.01.011 PubMed DOI
Chaves I, Pinheiro C, Paiva JA, Planchon S, Sergeant K, Renaut J, et al. Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue. Proteomics 2009; 9: 4154–4175. 10.1002/pmic.200700649 PubMed DOI
Murphy JP, Kong F, Pinto DM, Wang-Pruski G. Relative quantitative proteomic analysis reveals wound response proteins correlated with after-cooking darkening. Proteomics 2010;10: 4258–4269. 10.1002/pmic.200900718 PubMed DOI
Urbany C, Colby T, Stich B, Schmidt L, Schmidt J, Gebhardt C. Analysis of natural variation of the potato tuber proteome reveals novel candidate genes for tuber bruising. J Proteome Res. 2012;11: 703–716. 10.1021/pr2006186 PubMed DOI
Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman J-F. Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L. Int J Mol Sci. 2013;14: 4912–4933. 10.3390/ijms14034912 PubMed DOI PMC
Aghaei K, Ehsanpour AA, Komatsu S. Proteome analysis of potato under salt stress. J Proteome Res. 2008;7: 4858–4868. 10.1021/pr800460y PubMed DOI
Lim PO, Kim HJ, Nam HG. Leaf senescence. Ann Rev Plant Biol. 2007;58: 115–136. PubMed
Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, et al. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 2005. 138: 1690–1699. PubMed PMC
Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 1986;321: 446–449.
Mac A, Krzymowska M, Barabasz A, Hennig J. Transcriptional regulation of the gluB promoter during plant response to infection. Cell Mol Biol Lett. 2004;9: 843–853. PubMed
Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56: 2907–2914. PubMed
Vasquez-Robinet C, Mane SP, Ulanov A V, Watkinson JI, Stromberg VK, De Koeyer D, et al. Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot. 2008;59: 2109–2123. 10.1093/jxb/ern073 PubMed DOI PMC
Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chrom A. 2002;950: 21–29. PubMed
Dobrev PI, Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Meth Mol Biol. 2012;913: 251–261. PubMed
Hipkins MF, Baker N. Photosynthesis energy transduction, a practical approach In: Hipkins MF BN, ed. Spectroscopy. Oxford: Press; 1986. pp 51–101.
Seregelyes C, Barna B, Hennig J, Konopka D, Pasternak TP, Lukacs N, et al. Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Sci. 2003;165: 541–550.
Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK. Altered stomatal dynamics in ascorbate oxidase overexpressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot. 2008;59: 729–737. 10.1093/jxb/erm359 PubMed DOI
Hodges DM, Delong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1993;207: 604–611. PubMed
Hoser R, Zurczak M, Lichocka M, Zuzga S, Dadlez M, Samuel MA, et al. Nucleocytoplasmic partitioning of tobacco N receptor is modulated by SGT1. New Phytol. 2013;200: 158–171. 10.1111/nph.12347 PubMed DOI
Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti P. Identification and characterization of annexin gene family in rice. Plant Cell Rep. 2012;31: 813–825. 10.1007/s00299-011-1201-0 PubMed DOI
Lu Y, Ouyang B, Zhang J, Wang T, Lu C, Han Q, et al. Genomic organization, phylogenetic comparison and expression profiles of annexin gene family in tomato (Solanum lycopersicum). Gene 2012;499: 14–24. 10.1016/j.gene.2012.03.026 PubMed DOI
Zingaretti SM, Inacio MC, Pereira LM, Paz TA, Franca SC. Water stress and agriculture. In: S. Akinci editors, Responses of organisms to water stress, InTech 10.5772/53877 DOI
Carvalho MHC. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav. 2008;3: 156–165. PubMed PMC
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33: 453–467. 10.1111/j.1365-3040.2009.02041.x PubMed DOI
Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62: 869–882. 10.1093/jxb/erq340 PubMed DOI
Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA. 2007;104: 19631–19636. PubMed PMC
Hortensteiner S. Chlorophyll degradation during senescence. Ann Rev Plant Biol. 2006;57: 55–77. PubMed
Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochim Biophys Acta. 2009;1787: 3–14. 10.1016/j.bbabio.2008.09.013 PubMed DOI
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot. 2012;63: 1637–1661. 10.1093/jxb/ers013 PubMed DOI
Bartoli CG, Casalongue CA, Simontacchi M, Marquez-Garcia B, Foyer CH. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot. 2013;94: 73–88.
Shao HB, Chu LY, Lu ZH, Kang CM. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci. 2008;4: 8–14. PubMed PMC
Yuan S, Lin HH. Role of salicylic acid in plant abiotic stress. Z Naturforsch C. 2008;63: 313–320. PubMed
Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiol Plant. 1994;92: 696–717.
Lascano R, Munoz N, Robert GN, Rodriguez M, Melchiorre M, Trippi V, et al. Paraquat: an oxidative stress inducer In: Hasaneen MN, editor. Herbicides—Properties, Synthesis and Control of Weeds. Rijeka, Croatia: InTech; 2012. pp. 135–148.
Zhu J, Yuan S, Wei G, Qian D, Wu X, Jia H, et al. Annexin5 is essential for pollen development in Arabidopsis. Mol Plant. 2014;7: 751–754. 10.1093/mp/sst171 PubMed DOI
Zhu J, Wu X, Yuan S, Qian D, Nan Q, An L, et al. Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking. PLoS One. 2014;9, e102407 10.1371/journal.pone.0102407 PubMed DOI PMC
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol. 1999;50: 601–639. PubMed
Chen S, Yin C, Qiang S, Zhou F, Dai X. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng. Biochim Biophys Acta–Bioenergetics 2010;1797: 391–405. PubMed
Kwak JM, Nguyen V, Schroeder JI. The role of reactive oxygen species in hormonal responses. Plant Physiol. 2006;141: 323–329. PubMed PMC
Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, et al. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol. 2012;158: 1705–1714. 10.1104/pp.111.192740 PubMed DOI PMC
Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, et al. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot. 2009;60: 3221–3238. 10.1093/jxb/erp157 PubMed DOI PMC
Schraudner M, Moeder W, Wiese C, Camp WV, Inze D, Langebartels C, et al. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J. 1998;16: 235–245. 10.1046/j.1365-313x.1998.00294.x PubMed DOI
Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV. Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell. 2005;17: 957–970. PubMed PMC
Xie Y-J, Xu S, Han B, Wu M-Z, Yuan X-X, Han Y, et al. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J. 2011;66: 280–292. 10.1111/j.1365-313X.2011.04488.x PubMed DOI
Pfannschmidt T, Ogrzewalka K, Baginsky S, Sickmann A, Meyer HE, Link G. The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem. 2000;261: 253–261. PubMed
Steiner S, Schroter Y, Pfalz J, Pfannschmidt T. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol. 2011; 157: 1043–1055. 10.1104/pp.111.184515 PubMed DOI PMC
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis . Plant Cell 2005;17: 268–281. PubMed PMC
Mano J, Ohno C, Domae Y, Asada K. Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta. 2001;1504: 275–287. PubMed
Kitajima S. Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-cys peroxiredoxin. Photochem Photobiol. 2008;84: 1404–1409. 10.1111/j.1751-1097.2008.00452.x PubMed DOI
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48: 909–930. 10.1016/j.plaphy.2010.08.016 PubMed DOI
Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 2007;144: 1777–1785. PubMed PMC
Miller G, Shulaev V, Mittler R. Reactive oxygen signalling and abiotic stress. Physiol Plant. 2008;133: 481–489. 10.1111/j.1399-3054.2008.01090.x PubMed DOI
Gao Q, Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol. 2008;165: 138–148. PubMed
Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, et al. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 2010;153: 1144–1160. 10.1104/pp.110.153767 PubMed DOI PMC
Perl A, Treves R, Galili S, Aviv D, Shalgi E, Malkin S, et al. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theor Appl Genet. 1993;85:568–576. 10.1007/BF00220915 PubMed DOI
Pal AK, Acharya K, Vats SK, Kumar S, Ahuja PS. Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. Biol Plant. 2013;57: 359–364.
Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep. 2006;25: 1380–1386. PubMed
Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol. 2003;132: 1335–1343. PubMed PMC
Schmitz G, Reinhold T, Gobel C, Feussner I, Neuhaus HE, Conrath U. Limitation of nocturnal ATP import into chloroplasts seems to affect hormonal crosstalk, prime defense, and enhance disease resistance in Arabidopsis thaliana . Mol Plant Microbe Interact. 2010;23: 1584–1591. 10.1094/MPMI-02-10-0045 PubMed DOI
Baier M, Dietz KJ. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot. 2005;56: 1449–1462. PubMed
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Rad Biol Med. 2012;53: 2269–2276. 10.1016/j.freeradbiomed.2012.10.538 PubMed DOI
Xia X-J, Zhou Y-K, Shi K, Zhou J, Foyer CH, Yu J-Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot. in press; 10.1093/jxb/erv089 PubMed DOI
Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S. Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans . Mol Plant Microbe Interact. 2007;20: 1346–1352. PubMed
Dempsey DA, Vlot CA, Mary C. Wildermuth MC, Klessig DF. Salicylic acid biosynthesis and metabolism. Arabidopsis Book 2011;9: e0156 10.1199/tab.0156 PubMed DOI PMC
Navarre DA, Mayo D. Differential characteristics of salicylic acid-mediated signaling in potato. Physiol Mol Plant Path. 2004;64: 179–188.
Aimar D, Calafat M, Andrade AM, Carassay L, Abdala GI, Molas ML. Drought tolerance and stress hormones: from model organisms to forage crops. Plants and Environment, Dr. Hemanth Vasanthaiah editors, InTech, 2011. Available from: http://www.intechopen.com/books/plants-and-environment/drought-tolerance-and-stress-hormones-frommodel-organisms-to-forage-cropsFrom Model Organisms to Forage Crops
Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci. 2014;5: 4 10.3389/fpls.2014.00004 PubMed DOI PMC
Munne-Bosch S, Penuelas J. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 2003;217: 758–766. PubMed
Xue LJ, Guo W, Yuan Y, Anino EO, Nyamdari B, Wilson MC, et al. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus. Plant Cell 2013;25: 2714–2730. 10.1105/tpc.113.112839 PubMed DOI PMC
Janda T, Gondor OK, Yordanova R, Gabriella Szalai G, Pal M. Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant. 2014;36: 2537–2546.
Mateo A, Funck D, Muhlenbock P, Kular B, Mullineaux PM, Karpinski S. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot. 2006;57: 1795–1807. PubMed
Sanchez G, Gerhardt N, Siciliano F, Vojnov A, Malcuit I, Marano MR. Salicylic acid is involved in the Nb-mediated defense responses to Potato virus X in Solanum tuberosum . Mol Plant Microbe Interact. 2010;23: 394–405. 10.1094/MPMI-23-4-0394 PubMed DOI
Baebler S, Stare K, Kovac M, Blejec A, Prezelj N, Stare T, et al. Dynamics of responses in compatible potato—potato virus y interaction are modulated by salicylic acid. PLoS One. 2011;6(12): e29009 10.1371/journal.pone.0029009 PubMed DOI PMC
Chen Z, Ricigliano J, Klessig DF. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA. 1993;90: 9533–9537. PubMed PMC
Durner J, Klessig DF. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA. 1995;92: 11312–11316 PubMed PMC
Durner J, Klessig DF. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem. 1996;271: 28492–28501. PubMed
Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J. 2004;40: 909–919. PubMed
Argueso CT, Ferreira FJ, Kieber JJ. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32: 1147–1160. 10.1111/j.1365-3040.2009.01940.x PubMed DOI
Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku SJ, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem. 2010;285: 23371–23386. 10.1074/jbc.M109.096644 PubMed DOI PMC
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 2012;17: 172–179. 10.1016/j.tplants.2011.12.005 PubMed DOI
O’Brien JA, Benkova E. Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers Plant Sci. 2013;4: 451. PubMed PMC
Raspor M, Motyka V, Zizkova E, Dobrev PI, Travnickova A, Zdravkovic-Korac S, et al. Cytokinin profiles of AtCKX2-overexpressing potato plants and the impact of altered cytokinin homeostasis on tuberization in vitro. J Plant Growth Reg. 2012;31: 460–470.
Chow B, McCourt P. Hormone signalling from a developmental context. J Exp Bot. 2004;55: 247–251. PubMed
Rivero RM, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009;150: 1530–1040. 10.1104/pp.109.139378 PubMed DOI PMC
Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E. Enhanced cytokinin synthesis in tobacco plants expressing pSARK:: IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol. 2010;51: 1929–1941. 10.1093/pcp/pcq143 PubMed DOI
Havlova M, Dobrev PI, Motyka V, Storchova H, Libus J, Dobra J, et al. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 2008;31:341–353. PubMed
Gajdosova S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Ex Bot. 2011;62: 2827–2840. PubMed
Merewitz E, Gianfagna T, Huang B. Effects of SAG12-ipt and HSP18.2-ipt. expression on cytokinin production, root growth and leaf senescence in creeping bentgrass exposed to drought stress. J Am Soc Hort Sci. 2010;135: 230–239.
Mackova H, Hronkova M, Dobra J, Tureckova V, Novak O, Lubovska Z, et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot. 2013;64: 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Merewitz EB, Gianfagna T, Huang B. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Ex Bot. 2011;62: 5311–5333. PubMed PMC
Prochazkova D, Haisel D, Wilhelmova N. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochem Funct. 2008;26: 582–590. 10.1002/cbf.1481 PubMed DOI
Rashotte AM, Carson SDB, To JPC, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003;132: 1998–2011. PubMed PMC
Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, et al. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 2013;162: 272–294. 10.1104/pp.113.217026 PubMed DOI PMC
Cortleven A, Nitschke S, Klaumunzer M, Abdelgawad H, Asard H, Grimm B, et al. A novel protective function for cytokinin in the light stress response is mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 receptors. Plant Physiol. 2014. ł164: 1470–1483. 10.1104/pp.113.224667 PubMed DOI PMC
Finkelstein R. Abscisic acid synthesis and response. Arabidopsis Book 2013;11: e0166 10.1199/tab.0166 PubMed DOI PMC
DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 2008;132: 273–285. 10.1016/j.cell.2007.12.028 PubMed DOI
Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, et al. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 2003;15: 939–951. PubMed PMC
Havaux M, Bonfils JP, Lutz C, Niyogi KK. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol. 2000;124: 273–284. PubMed PMC
Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH. Low ascorbic acid in the vtc1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol. 2001;127: 426–435. PubMed PMC
Muller-Moule P, Conklin PL, Niyogi KK. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol. 2002;128: 970–977. PubMed PMC
Chen Z, Gallie DR. Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance. J Biol Chem. 2008;283: 21347–21361. 10.1074/jbc.M802601200 PubMed DOI
Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernandez LH; Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 2014;377: 369–381.
Havaux M, Eymery F, Porfirova S, Rey P, Dormann P. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana . Plant Cell 2005;17: 3451–3469. PubMed PMC
Li Z, Keasling JD, Niyogi KK. Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol. 2011;158: 313–323. 10.1104/pp.111.181230 PubMed DOI PMC
Gorecka KM, Konopka-Postupolska D, Hennig J, Buchet R, Pikula S. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem Biophys Res Commun. 2005;336: 868–875. PubMed
Mortimer JC, Coxon KM, Laohavisit A, Davies JM. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. Plant Signal Behav. 2009;4: 428–30. 10.1105/tpc.108.059550 PubMed DOI PMC
Plieth C, Vollbehr S. Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signal Behav 2012;7: 650–660. 10.4161/psb.20065 PubMed DOI PMC
Laohavisit A, Mortimer JC, Demidchik V, Coxon KM, Stancombe MA, Macpherson N, et al. Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 2009;21: 479–493. 10.1105/tpc.108.059550 PubMed DOI PMC
Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, et al. (2014) Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. Plant J 77: 136–145. 10.1111/tpj.12372 PubMed DOI
Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155: 2–18. 10.1104/pp.110.167569 PubMed DOI PMC
Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakiere B, Noctor G. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol Plant. 2009;2: 344–356. 10.1093/mp/ssp002 PubMed DOI
Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci. 2013;4: 477 10.3389/fpls.2013.00477 PubMed DOI PMC
Bick JA, Setterdahl AT, Knaff DB, Chen Y, Pitcher LH, Zilinskas BA, et al. Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 2001;40: 9040–9048. PubMed
Gomez LD, Vanacker H, Buchner P, Noctor G, Foyer CH. Intercellular distribution of glutathione synthesis and its response to chilling in maize. Plant Physiol. 2004;134: 1662–1671. PubMed PMC
Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 2008;147: 1358–1368. 10.1104/pp.108.121392 PubMed DOI PMC
Hossain M, Hasanuzzaman M, Fujita M. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Front Agric China. 2011;5: 1–14.
Hossain MA, Mostofa MG, Fujita M. Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J Plant Sci Mol Breed. 2013;2:1–14.
Labudda M, Azam FMS. Glutathione-dependent responses of plants to drought: a review. Acta Soc Bot Pol. 2013;83: 3–12.
Zechmann B. Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci. 2014;5: 566 10.3389/fpls.2014.00566 PubMed DOI PMC
Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, et al. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 2002;32: 329–342. PubMed
Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, et al. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J. 2007;52: 640–657. PubMed
Queval G, Jaillard D, Zechmann B, Noctor G. Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ. 2011;34: 21–32. 10.1111/j.1365-3040.2010.02222.x PubMed DOI
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot. 2010;61: 4197–4220. 10.1093/jxb/erq282 PubMed DOI
Zagorchev L, Seal CE, Kranner I, Odjakova M. A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci. 2013;14: 7405–7432. 10.3390/ijms14047405 PubMed DOI PMC
Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 2005;17: 1866–1875. PubMed PMC
Zaffagnini M, Bedhomme M, Lemaire SD, Trost P. The emerging roles of protein glutathionylation in chloroplasts. Plant Sci. 2012;185–186: 86–96. 10.1016/j.plantsci.2012.01.005 PubMed DOI
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH. Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot. 2012;89: 841–850. PubMed PMC
Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 2008;53: 999–1012. PubMed
Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, et al. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci USA. 2010;107: 2331–2336. 10.1073/pnas.0913689107 PubMed DOI PMC
Caplan JF, Filipenko NR, Fitzpatrick SL, Waisman DM. Regulation of annexin A2 by reversible glutathionylation. J Biol Chem. 2004;279: 7740–7750. PubMed
Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TR, et al. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radic Biol Med. 2014;67: 460–470. 10.1016/j.freeradbiomed.2013.12.004 PubMed DOI PMC
Kwon M, Yoon C, Jeong W, Rhee S, Waisman D. Annexin A2-S100A10 heterotetramer, a novel substrate of thioredoxin. J Biol Chem. 2005;280: 23584–23592. PubMed
Madureira PA, Hill R, Miller VA, Giacomantonio C, Lee PWK, Waisman DM. Annexin A2 is a novel cellular redox regulatory protein involved in tumorigenesis. Oncotarget 2011;2: 1075–1093. PubMed PMC
Madureira PA, Waisman DM. Annexin A2: the importance of being redox sensitive. Int J Mol Sci. 2013;14: 3568–3594. 10.3390/ijms14023568 PubMed DOI PMC
Lindermayr C, Saalbach G, Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005;137: 921–930. PubMed PMC
Muthuramalingam M, Matros A, Scheibe R, Mock H-P, Dietz K-J. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo . Front Plant Sci. 2013;4: 54 10.3389/fpls.2013.00054 PubMed DOI PMC
Clark G, Konopka-Postupolska D, Hennig J, Roux S. Is annexin 1 a multifunctional protein during stress responses? Plant Signal Behav. 2010;5: 303–307. PubMed PMC
Sies H. Glutathione and its role in cellular functions. Free Rad Biol Med. 1999;27: 916–921. PubMed
Masip L, Veeravalli K, Georgiou G. The many faces of glutathione in bacteria. Antioxid Redox Signal. 2006;8: 753–762. PubMed