Differences Between Tg2576 and Wild Type Mice in the NMDA Receptor-Nitric Oxide Pathway After Prolonged Application of a Diet High in Advanced Glycation End Products
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- dietní proteiny aplikace a dávkování MeSH
- lidé MeSH
- mozek metabolismus MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- oxid dusnatý metabolismus MeSH
- produkty pokročilé glykace aplikace a dávkování MeSH
- receptory N-methyl-D-aspartátu metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- dietní proteiny MeSH
- oxid dusnatý MeSH
- produkty pokročilé glykace MeSH
- receptory N-methyl-D-aspartátu MeSH
It has been suggested that advanced glycation end (AGE) products, via cognate receptor activation, are implicated in several diseases, including Alzheimer's disease. The NMDA receptor-nitric oxide pathway appears to be influenced by AGE products and involved in the pathogenesis of this type of dementia. In this study, C57BL/6J (WT) and transgenic (Tg2576) mice expressing human mutant amyloid precursor protein were kept on prolonged (8 months) diets containing regular or high amounts of AGE products. After the decapitation of 11-months old mice, brain tissue analyses were performed [expressions of the NR1, NR2A and NR2B subunits of NMDA receptors, activities of neuronal, endothelial and inducible nitric oxide synthase (nNOS, eNOS and iNOS)]. Moreover, levels of malondialdehyde and of human amyloid β 1-42 were estimated. We found increased activity of nNOS in WT mice maintained on a high compared to regular AGE diet; however, no similar differences were found in Tg2576 mice. In addition, we observed an increase in NR1 expression in Tg2576 compared to WT mice, both kept on a diet high in AGE products. Correlation analyses performed on mice kept on the regular AGE diet supported close links between particular subunits (NR2A-NR2B, in WT as well as in Tg2576 mice), between subunits and synthase (NR2A/NR2B-nNOS, only in WT mice) or between particular synthases (nNOS-iNOS, only in WT). Correlation analysis also revealed differences between WT mice kept on both diets (changed correlations between NR2A/NR2B-nNOS, between nNOS-eNOS and between eNOS-iNOS). Malondialdehyde levels were increased in both Tg2576 groups when compared to the corresponding WT mice, but no effects of the diets were observed. Analogously, no significant effects of diets were found in the levels of soluble or insoluble amyloid β 1-42 in Tg2576 mice. Our results demonstrate that prolonged ingestion of AGE products can influence the NMDA receptor-nitric oxide pathway in the brain and that only WT mice, not Tg2576 mice, are able to maintain homeostasis among subunits and synthases or among particular synthases. The prolonged application of AGE products enhanced differences between 11-months old Tg2576 and WT mice regarding this pathway. Observed differences in the pathway between WT mice kept on regular or high AGE diets suggest that the prolonged application of a diet low in AGE products could have beneficial effects in older or diabetic people and perhaps also in people with Alzheimer's disease.
Zobrazit více v PubMed
Mech Ageing Dev. 2014 Sep;140:10-2 PubMed
Neurobiol Aging. 2011 May;32(5):763-77 PubMed
Aging Cell. 2016 Apr;15(2):309-16 PubMed
Science. 1996 Oct 4;274(5284):99-102 PubMed
Eur Arch Psychiatry Neurol Sci. 1990;239(5):314-9 PubMed
Neurochem Res. 2015 Apr;40(4):713-22 PubMed
J Clin Biochem Nutr. 2010 Mar;46(2):177-85 PubMed
Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H315-23 PubMed
Neurobiol Aging. 2001 May-Jun;22(3):397-402 PubMed
J Transl Med. 2009 Mar 17;7:17 PubMed
J Chromatogr A. 2001 Jul 6;921(2):237-45 PubMed
Acta Neurol Scand. 2007 Dec;116(6):368-73 PubMed
Neurosci Lett. 2001 Apr 20;302(2-3):73-6 PubMed
Diabetes Metab Res Rev. 2000 Sep-Oct;16(5):308-15 PubMed
Atherosclerosis. 2013 Aug;229(2):287-94 PubMed
Urology. 1997 Dec;50(6):1016-26 PubMed
J Neurochem. 2008 Oct;107(1):279-90 PubMed
Lipids Health Dis. 2011 Dec 06;10:228 PubMed
Front Behav Neurosci. 2013 Aug 12;7:90 PubMed
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12 ):5710-4 PubMed
Neuropharmacology. 2013 Jan;64:13-26 PubMed
Neurogastroenterol Motil. 2008 Mar;20(3):253-61 PubMed
J Alzheimers Dis. 2009;16(4):833-43 PubMed
J Neural Transm (Vienna). 2006 Nov;113(11):1671-7 PubMed
Proc Natl Acad Sci U S A. 1994 May 24;91(11):4766-70 PubMed
J Neurosci. 2010 Apr 28;30(17 ):5948-57 PubMed
Diabetologia. 2004 Feb;47(2):331-9 PubMed
Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6434-8 PubMed
Neuroscience. 2015 Apr 2;290:530-42 PubMed
Neuroscience. 2013 Oct 10;250:565-77 PubMed
Am J Physiol Renal Physiol. 2003 Jun;284(6):F1121-37 PubMed
Neurogastroenterol Motil. 2006 May;18(5):392-400 PubMed
Neuroscience. 2004;128(1):73-89 PubMed
Mol Cell Biochem. 2006 Feb;283(1-2):129-37 PubMed
J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Jul 25;775(1):121-6 PubMed
Neurochem Int. 2008 Nov;53(5):118-25 PubMed
Nature. 1996 Aug 22;382(6593):685-91 PubMed
Altern Med Rev. 2009 Dec;14(4):373-9 PubMed
Cardiovasc Res. 2012 Dec 1;96(3):504-12 PubMed
Neuroscience. 2013 Oct 10;250:140-50 PubMed
Int J Dev Neurosci. 2003 Nov;21(7):357-69 PubMed
Neurogastroenterol Motil. 2011 Oct;23(10):964-e411 PubMed
Int J Dev Neurosci. 2004 Nov;22(7):475-84 PubMed
Cereb Cortex. 2005 Feb;15(2):211-20 PubMed