Expression and Subcellular Distribution of GFP-Tagged Human Tetraspanin Proteins in Saccharomyces cerevisiae
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26218426
PubMed Central
PMC4517926
DOI
10.1371/journal.pone.0134041
PII: PONE-D-15-17262
Knihovny.cz E-resources
- MeSH
- Glycosylation MeSH
- Microscopy, Confocal MeSH
- Humans MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Subcellular Fractions MeSH
- Tetraspanins genetics metabolism MeSH
- Protein Transport MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Recombinant Fusion Proteins MeSH
- Tetraspanins MeSH
- Green Fluorescent Proteins MeSH
Tetraspanins are integral membrane proteins that function as organizers of multimolecular complexes and modulate function of associated proteins. Mammalian genomes encode approximately 30 different members of this family and remotely related eukaryotic species also contain conserved tetraspanin homologs. Tetraspanins are involved in a number of fundamental processes such as regulation of cell migration, fusion, immunity and signaling. Moreover, they are implied in numerous pathological states including mental disorders, infectious diseases or cancer. Despite the great interest in tetraspanins, the structural and biochemical basis of their activity is still largely unknown. A major bottleneck lies in the difficulty of obtaining stable and homogeneous protein samples in large quantities. Here we report expression screening of 15 members of the human tetraspanin superfamily and successful protocols for the production in S. cerevisiae of a subset of tetraspanins involved in human cancer development. We have demonstrated the subcellular localization of overexpressed tetraspanin-green fluorescent protein fusion proteins in S. cerevisiae and found that despite being mislocalized, the fusion proteins are not degraded. The recombinantly produced tetraspanins are dispersed within the endoplasmic reticulum membranes or localized in granule-like structures in yeast cells. The recombinantly produced tetraspanins can be extracted from the membrane fraction and purified with detergents or the poly (styrene-co-maleic acid) polymer technique for use in further biochemical or biophysical studies.
See more in PubMed
Boavida LC, Qin P, Broz M, Becker JD, McCormick S. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo- and heterodimers when expressed in yeast. Plant Physiol. American Society of Plant Biologists; 2013;163: 696–712. 10.1104/pp.113.216598 PubMed DOI PMC
Chen MS, Tung KS, Coonrod SA, Takahashi Y, Bigler D, Chang A, et al. Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci USA. 1999;96: 11830–11835. PubMed PMC
Sala-Valdés M, Ailane N, Greco C, Rubinstein E, Boucheix C. Targeting tetraspanins in cancer. Expert Opin Ther Targets. 2012;16: 985–997. 10.1517/14728222.2012.712688 PubMed DOI
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol. 2014;171: 5462–5490. 10.1111/bph.12260 PubMed DOI PMC
Meredith LW, Wilson GK, Fletcher NF, McKeating JA. Hepatitis C virus entry: beyond receptors. Rev Med Virol. John Wiley & Sons, Ltd; 2012;22: 182–193. 10.1002/rmv.723 PubMed DOI
Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection. International Journal of Biochemistry and Cell Biology. Elsevier Ltd; 2012;44: 1574–1584. 10.1016/j.biocel.2012.06.018 PubMed DOI
Kwon MS, Shin S-H, Yim S-H, Lee KY, Kang H-M, Kim T-M, et al. CD63 as a biomarker for predicting the clinical outcomes in adenocarcinoma of lung. Lung Cancer. 2007;57: 46–53. 10.1016/j.lungcan.2007.01.032 PubMed DOI
Radford KJ, Mallesch J, Hersey P. Suppression of human melanoma cell growth and metastasis by the melanoma-associated antigen CD63 (ME491). Int J Cancer. 1995;62: 631–635. PubMed
Logozzi M, De Milito A, Lugini L, Borghi M, Calabrò L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE. 2009;4: e5219 10.1371/journal.pone.0005219 PubMed DOI PMC
Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, et al. Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol. 2012;14: 257–265. 10.1038/ncb2428 PubMed DOI PMC
Berthier-Vergnes O, Kharbili ME, la Fouchardière de A, Pointecouteau T, Verrando P, Wierinckx A, et al. Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion. Br J Cancer. 2011;104: 155–165. 10.1038/sj.bjc.6605994 PubMed DOI PMC
Szala S, Kasai Y, Steplewski Z, Rodeck U, Koprowski H, Linnenbach AJ. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci USA. 1990;87: 6833–6837. PubMed PMC
Guo Q, Xia B, Zhang F, Richardson MM, Li M, Zhang JS, et al. Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregulating cell-matrix and cell-cell adhesions. PLoS ONE. 2012;7: e38464 10.1371/journal.pone.0038464 PubMed DOI PMC
Ailane N, Greco C, Zhu Y, Sala-Valdés M, Billard M, Casal I, et al. Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Front Physiol. Frontiers; 2014;5: 364 10.3389/fphys.2014.00364 PubMed DOI PMC
Gesierich S, Berezovskiy I, Ryschich E, Zöller M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. American Association for Cancer Research; 2006;66: 7083–7094. 10.1158/0008-5472.CAN-06-0391 PubMed DOI
Takagi S, Fujikawa K, Imai T, Fukuhara N, Fukudome K, Minegishi M, et al. Identification of a highly specific surface marker of T-cell acute lymphoblastic leukemia and neuroblastoma as a new member of the transmembrane 4 superfamily. Int J Cancer. 1995;61: 706–715. PubMed
Ito E, Honma R, Imai J-I, Azuma S, Kanno T, Mori S, et al. A tetraspanin-family protein, T-cell acute lymphoblastic leukemia-associated antigen 1, is induced by the Ewing“s sarcoma-Wilms” tumor 1 fusion protein of desmoplastic small round-cell tumor. Am J Pathol. 2003;163: 2165–2172. PubMed PMC
Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrié A, Billuart P, et al. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet. 2000;24: 167–170. 10.1038/72829 PubMed DOI
Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EAW, et al. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet. 2010;86: 240–247. 10.1016/j.ajhg.2009.12.016 PubMed DOI PMC
Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet. 2010;86: 248–253. 10.1016/j.ajhg.2010.01.012 PubMed DOI PMC
Wang H-X, Li Q, Sharma C, Knoblich K, Hemler ME. Tetraspanin protein contributions to cancer. Biochem Soc Trans. 2011;39: 547–552. 10.1042/BST0390547 PubMed DOI
Xu D, Sharma C, Hemler ME. Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J. Federation of American Societies for Experimental Biology; 2009;23: 3674–3681. 10.1096/fj.09-133462 PubMed DOI PMC
Knoblich K, Wang H-X, Sharma C, Fletcher AL, Turley SJ, Hemler ME. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation. Cell Mol Life Sci. Springer Basel; 2014;71: 1305–1314. 10.1007/s00018-013-1444-8 PubMed DOI PMC
Bailey RL, Herbert JM, Khan K, Heath VL, Bicknell R, Tomlinson MG. The emerging role of tetraspanin microdomains on endothelial cells. Biochem Soc Trans. Portland Press Ltd; 2011;39: 1667–1673. 10.1042/BST20110745 PubMed DOI
Fairchild CL, Gammill LS. Tetraspanin18 is a FoxD3-responsive antagonist of cranial neural crest epithelial-to-mesenchymal transition that maintains cadherin-6B protein. J Cell Sci. The Company of Biologists Ltd; 2013;126: 1464–1476. 10.1242/jcs.120915 PubMed DOI PMC
Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol. 2005;6: 801–811. 10.1038/nrm1736 PubMed DOI
Kevany BM, Tsybovsky Y, Campuzano IDG, Schnier PD, Engel A, Palczewski K. Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2013;288: 36272–36284. 10.1074/jbc.M113.520700 PubMed DOI PMC
Rubinstein E. The complexity of tetraspanins. 2011;39: 501–505. 10.1042/BST0390501 PubMed DOI
Charrin S, Manié S, Oualid M, Billard M, Boucheix C, Rubinstein E. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 2002;516: 139–144. PubMed
Seigneuret M. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J. 2006;90: 212–227. 10.1529/biophysj.105.069666 PubMed DOI PMC
Min G, Wang H, Sun T-T, Kong X-P. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol. 2006;173: 975–983. 10.1083/jcb.200602086 PubMed DOI PMC
Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2001;276: 40055–40064. 10.1074/jbc.M105557200 PubMed DOI
Stipp CS, Kolesnikova TV, Hemler ME. Functional domains in tetraspanin proteins. Trends Biochem Sci. 2003;28: 106–112. 10.1016/S0968-0004(02)00014-2 PubMed DOI
Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, et al. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 2001;20: 12–18. 10.1093/emboj/20.1.12 PubMed DOI PMC
Kitadokoro K, Ponassi M, Galli G, Petracca R, Falugi F, Grandi G, et al. Subunit association and conformational flexibility in the head subdomain of human CD81 large extracellular loop. Biol Chem. 2002;383: 1447–1452. 10.1515/BC.2002.164 PubMed DOI
Yang X, Claas C, Kraeft S-K, Chen LB, Wang Z, Kreidberg JA, et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell. American Society for Cell Biology; 2002;13: 767–781. 10.1091/mbc.01-05-0275 PubMed DOI PMC
Hu C-CA, Liang F-X, Zhou G, Tu L, Tang C-HA, Zhou J, et al. Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell. American Society for Cell Biology; 2005;16: 3937–3950. 10.1091/mbc.E05-02-0136 PubMed DOI PMC
Higashihara M, Takahata K, Yatomi Y, Nakahara K, Kurokawa K. Purification and partial characterization of CD9 antigen of human platelets. FEBS Lett. 1990;264: 270–274. PubMed
Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, et al. Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA. National Acad Sciences; 2005;102: 1939–1944. 10.1073/pnas.0409493102 PubMed DOI PMC
Jamshad M, Rajesh S, Stamataki Z, McKeating JA, Dafforn T, Overduin M, et al. Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif. 2008;57: 206–216. 10.1016/j.pep.2007.10.013 PubMed DOI PMC
Tarry M, Skaar K, Heijne GV, Draheim RR, Högbom M. Production of human tetraspanin proteins in Escherichia coli. Protein Expr Purif. 2012;82: 373–379. 10.1016/j.pep.2012.02.003 PubMed DOI
Damek-Poprawa M, Krouse J, Gretzula C, Boesze-Battaglia K. A novel tetraspanin fusion protein, peripherin-2, requires a region upstream of the fusion domain for activity. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2005;280: 9217–9224. 10.1074/jbc.M407166200 PubMed DOI
Takayama H, Chelikani P, Reeves PJ, Zhang S, Khorana HG. High-level expression, single-step immunoaffinity purification and characterization of human tetraspanin membrane protein CD81. PLoS ONE. 2008;3: e2314 10.1371/journal.pone.0002314 PubMed DOI PMC
Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F. The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci. The Company of Biologists Ltd; 2008;121: 685–694. 10.1242/jcs.020347 PubMed DOI PMC
He Y, Wang K, Yan N. The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell. 2014;5: 658–672. 10.1007/s13238-014-0086-4 PubMed DOI PMC
Drew D, Newstead S, Sonoda Y, Kim H, Heijne von G, Iwata S. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc. 2008;3: 784–798. 10.1038/nprot.2008.44 PubMed DOI PMC
Newstead S, Kim H, Heijne von G, Iwata S, Drew D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2007;104: 13936–13941. 10.1073/pnas.0704546104 PubMed DOI PMC
Kawate T, Michel JC, Birdsong WT, Gouaux E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature. 2009;460: 592–598. 10.1038/nature08198 PubMed DOI PMC
Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc. 2009;131: 7484–7485. 10.1021/ja810046q PubMed DOI
Jamshad M, Lin Y-P, Knowles TJ, Parslow RA, Harris C, Wheatley M, et al. Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem Soc Trans. 2011;39: 813–818. 10.1042/BST0390813 PubMed DOI
Goddard AD, Dijkman PM, Adamson RJ, Reis dos RI, Watts A. Reconstitution of membrane proteins: a GPCR as an example. Meth Enzymol. Elsevier; 2015;556: 405–424. 10.1016/bs.mie.2015.01.004 PubMed DOI
Jamshad M, Charlton J, Lin Y-P, Routledge SJ, Bawa Z, Knowles TJ, et al. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep. 2nd ed. Portland Press Ltd; 2015;35: 1–10. 10.1042/BSR20140171 PubMed DOI PMC
Li D, Li J, Zhuang Y, Zhang L, Xiong Y, Shi P, et al. Nano-size uni-lamellar lipodisq improved in situ auto-phosphorylation analysis of E. coli tyrosine kinase using (19)F nuclear magnetic resonance. Protein Cell. Higher Education Press; 2015;6: 229–233. 10.1007/s13238-014-0129-x PubMed DOI PMC
Gulati S, Jamshad M, Knowles TJ, Morrison KA, Downing R, Cant N, et al. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J. Portland Press Ltd; 2014;461: 269–278. 10.1042/BJ20131477 PubMed DOI
Postis V, Rawson S, Mitchell JK, Lee SC, Parslow RA, Dafforn TR, et al. The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta. 2015;1848: 496–501. 10.1016/j.bbamem.2014.10.018 PubMed DOI PMC
Dörr JM, Koorengevel MC, Schäfer M, Prokofyev AV, Scheidelaar S, van der Cruijsen EAW, et al. Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci USA. National Acad Sciences; 2014;111: 18607–18612. 10.1073/pnas.1416205112 PubMed DOI PMC
Long AR, O'Brien CC, Malhotra K, Schwall CT, Albert AD, Watts A, et al. A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol. BioMed Central Ltd; 2013;13: 41 10.1186/1472-6750-13-41 PubMed DOI PMC
Swainsbury DJK, Scheidelaar S, van Grondelle R, Killian JA, Jones MR. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew Chem Int Ed Engl. WILEY‐VCH Verlag; 2014;53: 11803–11807. 10.1002/anie.201406412 PubMed DOI PMC
Maeda H, Takeshita J, Kanamaru R. A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein antibiotic. Int J Pept Protein Res. 1979;14: 81–87. PubMed
Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs. 1992;3: 175–210. PubMed
Cormack BP, Bertram G, Egerton M, Gow NA, Falkow S, Brown AJ. Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology (Reading, Engl). 1997;143 (Pt 2): 303–311. PubMed
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156: 119–122. PubMed
Mus-Veteau I. Membrane Proteins Production for Structural Analysis. 1st ed. Mus-Veteau I, editor. New York: Springer New York; 2014. 10.1007/978-1-4939-0662-8 DOI
Parker JL, Newstead S. Method to increase the yield of eukaryotic membrane protein expression in Saccharomyces cerevisiae for structural and functional studies. Protein Sci. 2014;23: 1309–1314. 10.1002/pro.2507 PubMed DOI PMC
Orwick MC, Judge PJ, Procek J, Lindholm L, Graziadei A, Engel A, et al. Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew Chem Int Ed Engl. 2012;51: 4653–4657. 10.1002/anie.201201355 PubMed DOI
Henry SM, El-Sayed MEH, Pirie CM, Hoffman AS, Stayton PS. pH-responsive poly(styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules. 2006;7: 2407–2414. 10.1021/bm060143z PubMed DOI
Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2013;288: 13305–13316. 10.1074/jbc.M113.457937 PubMed DOI PMC
Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA. National Acad Sciences; 2009;106: 1760–1765. 10.1073/pnas.0813167106 PubMed DOI PMC
Rath A, Cunningham F, Deber CM. Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts. Proc Natl Acad Sci USA. National Acad Sciences; 2013;110: 15668–15673. 10.1073/pnas.1311305110 PubMed DOI PMC
André N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, et al. Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci. Cold Spring Harbor Laboratory Press; 2006;15: 1115–1126. 10.1110/ps.062098206 PubMed DOI PMC
Rapoport TA, Goder V, Heinrich SU, Matlack KES. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 2004;14: 568–575. 10.1016/j.tcb.2004.09.002 PubMed DOI
Voeltz GK, Rolls MM, Rapoport TA. Structural organization of the endoplasmic reticulum. EMBO Rep. 2002;3: 944–950. 10.1093/embo-reports/kvf202 PubMed DOI PMC
Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003;4: 181–191. 10.1038/nrm1052 PubMed DOI
Waldo GS, Standish BM, Berendzen J, Terwilliger TC. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol. 1999;17: 691–695. 10.1038/10904 PubMed DOI
Thomas J, Tate CG. Quality control in eukaryotic membrane protein overproduction. J Mol Biol. 2014;426: 4139–4154. 10.1016/j.jmb.2014.10.012 PubMed DOI PMC
Tu L, Sun T-T, Kreibich G. Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Mol Biol Cell. American Society for Cell Biology; 2002;13: 4221–4230. 10.1091/mbc.E02-04-0211 PubMed DOI PMC
Nothwehr SF, Roberts CJ, Stevens TH. Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues. J Cell Biol. 1993;121: 1197–1209. PubMed PMC
Bernsel A, Viklund H, Hennerdal A, Elofsson A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. Oxford University Press; 2009;37: W465–8. 10.1093/nar/gkp363 PubMed DOI PMC
Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). Oxford University Press; 2011;2011: bar009–bar009. 10.1093/database/bar009 PubMed DOI PMC
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. Oxford University Press; 2013;41: W597–600. 10.1093/nar/gkt376 PubMed DOI PMC