Interaction of 3H+ (as HTO) and 36Cl- (as Na36Cl) with crushed granite and corresponding fracture infill material investigated in column experiments
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26224965
PubMed Central
PMC4514635
DOI
10.1007/s10967-013-2870-7
PII: 2870
Knihovny.cz E-zdroje
- Klíčová slova
- Crushed granite, Dynamic conditions, Groundwater, HTO, Modeling, Na36Cl,
- Publikační typ
- časopisecké články MeSH
The transport of 3H+ (as HTO) and 36Cl- (as Na36Cl) was investigated in the dynamic system, i.e., in the columns filled with crushed pure granite and fracture infill of various grain sizes. The aim of column experiments was to determine important transport parameter, such as the retardation, respectively distribution coefficients, Peclet numbers and hydrodynamic dispersion coefficients. Furthermore, the research was focused to quantification of the effect of grain size on migration of studied radionuclides. The experimental breakthrough curves were fitted by a model based on the erfc-function, assuming a linear reversible equilibrium sorption/desorption isotherm, and the above mentioned transport parameters were determined. The results showed that influence of grain size on sorption of 3H+ and 36Cl- was negligible. Retardation and distribution coefficients of both tracers converged to one and zero, respectively, in case of all fractions of crushed granite and infill material. Generally, the presumed ion exclusion of 36Cl in anionic form was proved under given conditions, only very weak one seems to exist in a case of infill material. In principal, both radionuclides behaved as non-sorbing, conservative tracers. On the other hand, the influence of grain size on Peclet numbers value and on dispersion coefficient was observed for both crystalline materials, namely in agreement with theoretical suppositions that the values of Peclet numbers decrease with increasing grain size and values of dispersion coefficient increase.
Zobrazit více v PubMed
Palágyi Š, Štamberg K, Vodičková H. Transport and sorption of 85Sr and 125I in crushed crystalline rocks under dynamic flow conditions. J Radioanal Nucl Chem. 2010;283:629–636. doi: 10.1007/s10967-009-0393-z. DOI
Palágyi Š, Vodičková H, Landa J, Palágyiová J, Laciok A. Migration and sorption of 137Cs and 152,154Eu in crushed crystalline rocks under dynamic conditions. J Radioanal Nucl Chem. 2009;279:431–441. doi: 10.1007/s10967-007-7331-3. DOI
Bazer-Bachi F, Descostes M, Tevissen E, Meier P, Grenut B, Simonno M-O, Sardin M. Characterization of sulphate sorption on Callovo-Oxfordian argillites by batch, column and through-diffusion experiments. Phys Chem Earth. 2007;32:552–558. doi: 10.1016/j.pce.2006.01.010. DOI
Missana T, Alonso Ú, García-Gutiérrez M, Mingarro M. Role of bentonite colloids on europium and plutonium migration in a granite fracture. Appl Geochem. 2008;23:1484–1497. doi: 10.1016/j.apgeochem.2008.01.008. DOI
Delos A, Walther C, Schafer T, Buchner S. Size dispersion and colloid mediated radionuclide transport in synthetic porous media. J Colloid Interface Sci. 2008;324:212–215. doi: 10.1016/j.jcis.2008.05.017. PubMed DOI
Voudrias E, Means JL, Kittel J. Retardation of tritium and cesium in brine-saturated mudstone, halite, and carbonate porous media. Gr Water. 1993;31:605–615. doi: 10.1111/j.1745-6584.1993.tb00594.x. DOI
Huber F, Enzmann F, Wenka A, Bouby M, Dentz M, Schafer T. Natural micro-scale heterogeneity induced solute and nanoparticle retardation in fractured crystalline rock. J Contam Hydrol. 2012;133:40–52. doi: 10.1016/j.jconhyd.2012.03.004. PubMed DOI
Li M-H, Wang T-H, Teng S-P. Experimental and numerical investigations of effect of column length on retardation factor determination: a case study of cesium transport in crushed granite. J Hazard Materials. 2009;162:530–535. doi: 10.1016/j.jhazmat.2008.05.076. PubMed DOI
Mirbagheri S-A, Tanji K-K, Rajaee T. Selenium transport and transformation modelling in soil columns and ground water contamination prediction. Hydrol Process. 2008;22:2475–2483.
Hölttä P, Hautojärvi A, Hakanen M. Transport and retardation of non-sorbing radionuclides in crystalline rock fractures. Radiochim Acta. 1992;58(59):285–290.
Hölttä P, Siitari-Kauppi M, Hamanen M, Huitti T, Hautojärvi A, Lindberg A. Radionuclide transport and retardation in rock fracture and crushed rock column experiments. J Contam Hydrol. 1997;26:135–145.
Hölttä P, Hamanen M, Hautojärvi A, Timonen J, Käätäinen K. The effect of matrix diffusion on radionuclide migtration in rock column experiments. J Contam Hydrol. 1996;21:165–173.
Palágyi Š, Štamberg K. Modeling of transport of radionuclides in beds of crushed crystalline rocks under equilibrium non-linear sorption isotherm conditions. Radiochim Acta. 2010;98:359–365.
Palágyi Š, Vodičková H. Sorption and desorption of 125I−, 137Cs+, 85Sr2+ and 152,154Eu3+ on disturbed soils under dynamic flow and static batch conditions. J Radioanal Nucl Chem. 2009;280:3–14.
Palágyi Š, Štamberg K. Effect of grain size on the 85Sr2+ sorption and desorption in columns of crushed granite and infill materials from granitic water under dynamic conditions. J Radioanal Nucl Chem. 2013;297:33–39.
Palágyi Š, Štamberg K. Determination of 137Cs and 89Sr transport parameters in fucoidic sand columns and groundwater system. Centr Eur J Chem. 2011;9:798–807.
Štamberg K, Palágyi Š. Effect of grain size on the sorption and desorption of 137Cs in crushed granite columns and groundwater system under dynamic conditions. J Radioanal Nucl Chem. 2012;293:127–134.
Videnská K, Palágyi Š, Štamberg K, Vodičková H, Havlová V. Effect of grain size on the sorption and desorption of SeO42− and SeO32− in columns of crushed granite and fracture infill from granitic water under dynamic conditions. J Radioanal Nucl Chem. 2013;298:547–554.
Ebert K, Ederer H. Komputeranwendungen in der Chemie. Weinheim: VCH Verlagsgesellschaft mbH; 1985. p. 321.
Herbelin AL, Westal AC FITEQL—A computer program for determination of chemical equilibrium constants from experimental data. Version 3.2, Report 96-01, Department of Chemistry, Oregon State University, Corvallis, 1996
Dvořák L, Ledvinka M, Sobotka M (1991) Famulus 3.1. Computer Equipment, Prague
Bear J. Hydraulics of groundwater. New York: McGraw-Hill; 1979.
Štamberg K. Modeling of migration processes in environment (in Czech), Textbook. Prague: Czech Technical University in Prague; 1998.