Influence of Soil Properties on Soldierless Termite Distribution
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26270057
PubMed Central
PMC4536034
DOI
10.1371/journal.pone.0135341
PII: PONE-D-15-03059
Knihovny.cz E-resources
- MeSH
- Rainforest * MeSH
- Isoptera physiology MeSH
- Soil * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil * MeSH
In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.
Institute of Organic Chemistry and Biochemistry Flemingovo nám 2 166 10 Prague Czech Republic
Plant Ecology and Biogeochemistry Université Libre de Bruxelles Brussels Belgium
See more in PubMed
Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, et al. (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42: S3–S15.
Decaëns T (2010) Macroecological patterns in soil communities. Global Ecol Biogeogr 19: 287–302. PubMed PMC
Chave J (2004) Neutral theory and community ecology. Ecol Lett 7: 241–253.
Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81: 214–21 10.1111/j.1365-2656.2011.01886.x PubMed DOI
Ingimarsdóttir M, Caruso T, Ripa J, Magnúsdóttir OB, Migliorini M, Hedlund K (2012) Primary assembly of soil communities: disentangling the effect of dispersal and local environment. Oecologia 170, 745–54. 10.1007/s00442-012-2334-8 PubMed DOI
Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17: 177–183.
Schneider K, Maraun M (2005) Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49: 61–67.
Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A et al. (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36: 1769–1774.
Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol Biochem 37: 1718–1725.
Hishi T, Hyodo F, Saitoh S, Takeda H (2007) The feeding habits of Collembola along decomposition gradients using stable carbon and nitrogen isotope analyses. Soil Biol Biochem 39: 1820–1823.
Cassagne N, Gers C, Gauquelin T (2003) Relationships between Collembola, soil chemistry and humus types in forest stands (France). Biol Fert Soils 37: 355–361.
Cassagne N, Bal-Serin MC, Gers C, Gauquelin T (2004) Changes in humus properties and collembolan communities following the replanting of beech forests with spruce. Pedobiologia 48: 267–276.
Giller PS (1996) The diversity of soil communities, the "poor man's tropical rainforest". Biodiversity Conserv 168: 135–168.
Kaspari M, Yanoviak SP, Dudley R (2008) On the biogeography of salt limitation: A study of ant communities. Proc Natl Acad Sci U S A 105: 17848–17851. 10.1073/pnas.0804528105 PubMed DOI PMC
Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci U S A 106: 19405–19409. 10.1073/pnas.0906448106 PubMed DOI PMC
Jacquemin J, Maraun M, Roisin Y, Leponce M (2012) Differential response of ants to nutrient addition in a tropical Brown Food Web. Soil Biol Biochem 46: 10–17.
Davies RG, Hernández LM, Eggleton P, Didham RK, Fagan LL, Winchester NN (2003) Environmental and spatial influences upon species composition of a termite assemblage across Neotropical forest islands. J Trop Ecol 19: 509–524.
Roisin Y, Leponce M (2004) Characterizing termite assemblages in fragmented forests: A test case in the Argentinian Chaco. Austral Ecol 29: 637–646.
Bignell DE, Eggleton P (2000) Termites in ecosystems In: Abe T, Bignell BE, Higashi M, editors. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Kluwer Academic Publishers; pp. 363–387.
Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica, 5: 2–14.
Martius C (1994) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38: 407–428.
Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG et al. (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond B Biol Sci 351: 51–68.
Holt JA, Lepage M (2000) Termites and soil properties In: Abe T, Bignell BE, Higashi M, editors. Termites: Evolution, Sociality, Symbioses, Ecology. Dordrecht: Kluwer Academic Publishers; pp. 389–407.
Bourguignon T, Leponce M, Roisin Y (2011) Beta-diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43: 473–479.
Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26: 356–366.
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, et al. (2011) Feeding ecology and phylogenetic structure of a complex Neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36: 261–269.
Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32: 1281–1291.
Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37: 1648–1655.
Griffiths BS, Bracewell JM, Robertson GW, Bignell DE (2013) Pyrolysis–mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis . Soil Biol Biochem 57: 957–959.
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Roisin Y (2009) Niche differentiation among Neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biol Biochem 41: 2038–2043.
Bourguignon T, Leponce M, Roisin Y (2011) Are the spatio-temporal dynamics of soil-feeding termite colonies shaped by intra-specific competition? Ecol Entomol 36: 776–785.
Bourguignon T, Šobotník J, Hanus R, Krasulová J, Vrkoslav V, Cvačka J, et al. (2013) Delineating species boundaries using an integrative taxonomic approach: The case of soldierless termites (Isoptera, Termitidae, Apicotermitinae). Mol Phylogenet Evol 69: 694–703. 10.1016/j.ympev.2013.07.007 PubMed DOI
Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods, Berlin Heidelberg, Springer-Verlag.
ter Braak CJF, Šmilauer P (1998) CANOCO Reference Manual and User’s Guide to Canoco for Windows. Centre for Biometry and Microcomputer Power, Wageningen and Ithaca.
Sands WA (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bull Br Mus Nat Hist Entomol 18: 1–244.
Donovan SE (2002) A morphological study of the enteric valves of the afrotropical Apicotermitinae (Isoptera: Termitidae). J Nat Hist 36: 1823–1840.
Bourguignon T, Scheffrahn RH, Křeček J, Nagy ZT, Sonet G, Roisin Y (2010) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov. Invertebr Syst 24: 357–370.
Eggleton P, Bignell DE (1997) Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest Reserve, southern Cameroon, and its biological significance. J Afr Zool 111: 489–498.
Amelung W, Martius C, Bandeira AG, Garcia MVB, Zech W (2002) Lignin characteristics and density fractions of termite nests in an Amazonian rain forest—indicators of termite feeding guilds? Soil Biol Biochem 34: 367–372.
Jiménez JJ, Decaens T, Lavelle P (2008) C and N concentrations in biogenic structures of a soil-feeding termite and a fungus-growing ant in the Colombian savannas. Appl Soil Ecol 40: 120–128.
Jacquemin J, Drouet T, Delsinne T, Roisin Y, Leponce M (2012) Soil properties only weakly affect subterranean ant distribution at small spatial scales. Appl Soil Ecol 62: 163–169.
Impact of Wood Age on Termite Microbial Assemblages