Diminishing the taxonomic gap in the neotropical soldierless termites: descriptions of four new genera and a new Anoplotermes species (Isoptera, Termitidae, Apicotermitinae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37397162
PubMed Central
PMC10311428
DOI
10.3897/zookeys.1167.100001
PII: 100001
Knihovny.cz E-zdroje
- Klíčová slova
- Enteric valve armature, Linnean shortfall, mitogenome sequencing, soil-feeder, species distribution, taxonomy,
- Publikační typ
- časopisecké články MeSH
The neotropical Apicotermitinae is a common and widespread clade of mostly soil-feeding soldierless termites. With few exceptions, species of this group were originally assigned to the genus Anoplotermes Müller, 1873. The application of internal worker morphology coupled with genetic sequencing has recently shed light on the true diversity of this subfamily. Herein, Anoplotermessusanae Scheffrahn, Carrijo & Castro, sp. nov. and four new species in four new genera are described: Hirsutitermeskanzakii Scheffrahn, Carrijo & Castro, gen. nov. et sp. nov., Krecekitermesdaironi Scheffrahn, Carrijo & Castro, gen. nov. et sp. nov., Mangolditermescurveileum Scheffrahn, Carrijo & Castro, gen. nov. et sp. nov., and Ourissotermesgiblinorum Scheffrahn, Carrijo & Castro, gen. nov. et sp. nov. Worker descriptions are based mainly on worker gut morphology, including the enteric valve, while imagoes were described based on external characters. A Bayesian phylogenetic tree of New World Apicotermitinae was constructed using the complete mitogenome to infer genera relationships and corroborate the taxonomic decisions. Distribution maps and a dichotomic key to the known Neotropical Apicotermitinae genera are provided.
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
Museu de Zoologia da Universidade de São Paulo Cx Postal 42391 CEP 04218 970 São Paulo SP Brazil
Zobrazit více v PubMed
Acioli ANS, Constantino R. (2015) A taxonomic revision of the neotropical termite genus PubMed DOI
Barros E, Grimaldi M, Sarrazin M, Chauvel A, Mitja D, Desjardins T, Lavelle P. (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Applied Soil Ecology 26(2): 157–168. 10.1016/j.apsoil.2003.10.012 DOI
Bini LM, Diniz-Filho JAF, Rangel TFLVB, Bastos RP, Pinto MP. (2006) Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. Diversity & Distributions 12(5): 475–482. 10.1111/j.1366-9516.2006.00286.x DOI
Bourguignon T, Sobotník J, Lepoint G, Martin JM, Roisin Y. (2009) Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biology & Biochemistry 41(10): 2038–2043. 10.1016/j.soilbio.2009.07.005 DOI
Bourguignon T, Scheffrahn RH, Krecek J, Nagy ZT, Sonet G, Roisin Y, Křeček J, Nagy ZT, Sonet G, Roisin Y. (2010) Towards a revision of the Neotropical soldierless termites (Isoptera:Termitidae): redescription of the genus DOI
Bourguignon T, Leponce M, Roisin Y. (2011a) Beta-Diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43(4): 473–479. 10.1111/j.1744-7429.2010.00729.x DOI
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, Roisin Y. (2011b) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology 36(2): 261–269. 10.1111/j.1365-2311.2011.01265.x DOI
Bourguignon T, Šobotník J, Hanus R, Krasulová J, Vrkoslav V, Cvačka J, Roisin Y. (2013) Delineating species boundaries using an iterative taxonomic approach: The case of soldierless termites (Isoptera, Termitidae, Apicotermitinae). Molecular Phylogenetics and Evolution 69(3): 694–703. 10.1016/j.ympev.2013.07.007 PubMed DOI
Bourguignon T, Drouet T, Šobotník J, Hanus R, Roisin Y. (2015) Influence of soil properties on soldierless termite distribution. PLoS ONE 10(8): e0135341. 10.1371/journal.pone.0135341 PubMed DOI PMC
Bourguignon T, Sobotnik J, Dahlsjo CAL, Roisin Y. (2016a) The soldierless Apicotermitinae: Insights into a poorly known and ecologically dominant tropical taxon. Insectes Sociaux 63(1): 39–50. 10.1007/s00040-015-0446-y DOI
Bourguignon T, Scheffrahn RH, Nagy ZT, Sonet G, Host B, Roisin Y. (2016b) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): Redescription of the genus DOI
Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Current Biology 29(21): 3728–3734.e4. 10.1016/j.cub.2019.08.076 PubMed DOI
Carrijo TF, Brandão D, Oliveira DE, Costa DA, Santos T. (2009) Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation 13(6): 575–581. 10.1007/s10841-008-9205-y DOI
Carrijo TF, Scheffrahn RH, Křeček J. (2015) PubMed DOI
Carrijo TF, Pontes-Nogueira M, Santos RG, Morales AC, Cancello EM, Scheffrahn RH. (2020) New World DOI
Casalla R, Korb J. (2019) Termite diversity in Neotropical dry forests of Colombia and the potential role of rainfall in structuring termite diversity. Biotropica 51(2): 165–177. 10.1111/btp.12626 DOI
Castro D, Scheffrahn RH, Carrijo TF. (2018) PubMed DOI PMC
Castro D, Constantini JP, Scheffrahn RH, Carrijo TF, Cancello EM. (2020) PubMed DOI PMC
Castro D, Carrijo TF, Serna FJ, Peña-Venegas CP. (2021) Can rubber crop systems recover termite diversity in previously degraded pastures in the Colombian Amazon region? Neotropical Entomology 50(6): 899–911. 10.1007/s13744-021-00905-y PubMed DOI
Constantini JP, Carrijo TF, Palma-Onetto V, Scheffrahn R, Carnohan LP, Šobotník J, Cancello EM. (2018) PubMed DOI
Constantini J, Janei V, Costa-Leonardo AM, Cancello EM. (2020) DOI
Constantino R. (2022) Termite Database. University of Brasília. http://164.41.140.9/catal/about.php [March 23, 2022]
Constantino R, Acioli ANS, Schmidt K, Cuezzo C, Carvalho SHC, Vasconcellos A. (2006) A taxonomic revision of the Neotropical termite genera DOI
Cunha HF, Costa DA, Silva APT, Nicacio J, Abot AR. (2021) Termite functional diversity along an elevational gradient in the Cerrado of Mato Grosso do Sul. International Journal of Tropical Insect Science 41: 555–562. 10.1007/s42690-020-00240-6 DOI
Rocha MM, Cancello EM. (2009) Revision of the Neotropical termite genus DOI
da Silva IS, Vasconcellos A, Moura FM da S. (2019) Termite assemblages (Blattaria, isoptera) in two montane forest (brejo de altitude) areas in northeastern brazil. Biota Neotropica 19(1): e20180519. 10.1590/1676-0611-bn-2018-0519 DOI
Dahlsjö CAL, Valladares Romero CS, Espinosa Iñiguez CI. (2020) Termite diversity in Ecuador: A comparison of two primary forest national parks. Journal of Insect Science 20(1): 1–4. 10.1093/jisesa/iez129 PubMed DOI PMC
Davies RG. (2002) Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133(2): 233–242. 10.1007/s00442-002-1011-8 PubMed DOI
De Azevedo RA, Santos QCL, Fluck IE, Rodrigues DJ, Battirola LD, Dambros CDS. (2021) Selective logging does not alter termite response to soil gradients in Amazonia. Journal of Tropical Ecology 37(1): 43–49. 10.1017/S0266467421000080 DOI
De Souza OFF, Brown VK. (1994) Effects of habitat fagmentation on amazonian termite communities effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology 10: 197–206. 10.1017/S0266467400007847 DOI
Deligne J. (1999) Functional morphology and evolution of a carpenter’s plane-like tool in the mandibles of termite workers (InsectaIsoptera). Belgian Journal of Zoology 129: 201–218. http://biblio.naturalsciences.be/associated_publications/bjz/129-1/bjz_129_deligne_201-218.pdf [July 16, 2019]
Demetrio WC, Conrado AC, Acioli ANS, Casadei Ferreira A, Bartz MLC, James SW, da Silva E, Maia LS, Martins GC, Macedo RS, Stanton DWG, Lavelle P, Velasquez E, Zangerlé A, Barbosa R, Tapia‐Coral SC, Muniz AW, Santos A, Ferreira T, Segalla RF, Decaëns T, Nadolny HS, Peña‐Venegas CP, Maia CMBF, Pasini A, Mota AF, Taube Júnior PS, Silva TAC, Rebellato L, de Oliveira Júnior RC, Neves EG, Lima HP, Feitosa RM, Vidal Torrado P, McKey D, Clement CR, Shock MP, Teixeira WG, Motta ACV, Melo VF, Dieckow J, Garrastazu MC, Chubatsu LS, Kille P, Brown GG, Cunha L. (2021) A “Dirty” Footprint: Macroinvertebrate diversity in Amazonian Anthropic Soils. Global Change Biology 00(19): 1–17. 10.1111/gcb.15752 PubMed DOI PMC
Donovan SE, Eggleton P, Bignell DE. (2001) Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26(4): 356–366. 10.1046/j.1365-2311.2001.00342.x DOI
Drummond AJ, Rambaut A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7(1): 1–8. 10.1186/1471-2148-7-214 PubMed DOI PMC
Duran-Bautista EH, Muñoz Y, Galindo JD, Ortiz T, Bermúdez M. (2020a) Soil physical quality and relationship to changes in termite community in northwestern Colombian Amazon. Frontiers in Ecology and Evolution 8: e598134. 10.3389/fevo.2020.598134 DOI
Duran-Bautista EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P. (2020b) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecological Indicators 117: e106550. 10.1016/j.ecolind.2020.106550 DOI
Eggleton P. (2011) An introduction to termites: Biology, taxonomy and functional morphology. In: Bignell D, Roisin Y, Lo N (Eds) Biology of termites: a modern synthesis. Springer Netherlands, 26 pp. 10.1007/978-90-481-3977-4_1 DOI
Eggleton P, Tayasu I. (2001) Feeding groups, lifetypes and the global ecology of termites. Ecological Research 16(5): 941–960. 10.1046/j.1440-1703.2001.00444.x DOI
Eggleton P, Homathevi R, Jeeva D, Jones DT, Davies RG, Maryati M. (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3: 119–128.
Fittkau EJ, Klinge H. (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5(1): 1–2. 10.2307/2989676 DOI
Fontes LR. (1986) Two new genera of soldierless Apicotermitinae from the Neotropical region (Isoptera, Termitidae). Sociobiology 12: 285–297.
Gernhard T. (2008) The conditioned reconstructed process. Journal of Theoretical Biology 253(4): 769–778. 10.1016/j.jtbi.2008.04.005 PubMed DOI
Grassé PP, Noirot C. (1954)
Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D. (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology 47(4): 215–222. 10.1016/j.ejsobi.2011.05.005 DOI
Kaiser P. (1953)
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Lavelle P, Rodríguez N, Arguello O, Bernal J, Botero C, Chaparro P, Gómez Y, Gutiérrez A, Hurtado M del P, Loaiza S, Pullido SX, Rodríguez E, Sanabria C, Velásquez E, Fonte SJ. (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment 185: 106–117. 10.1016/j.agee.2013.12.020 DOI
Menta C, Remelli S. (2020) Soil Health and Arthropods: From Complex System to Worthwhile Investigation. Insects 11(1): 1–54. 10.3390/insects11010054 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Noirot C. (2001) The gut of termites (Isoptera) comparative anatomy, systematics, phylogeny. II. – Higher termites (Termitidae). Annales de la Société entomologique de France (N.S. ) 37: 431–471.
Palin OF, Eggleton P, Malhi Y, Girardin CAJ, Rozas-Dávila A, Parr CL. (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43(1): 100–107. 10.1111/j.1744-7429.2010.00650.x DOI
Pinzón OP, Scheffrahn RH, Carrijo TF. (2019) DOI
Rocha MM Da, Cancello EM. (2009) Revision of the Neotropical termite genus DOI
Rocha MM, Cancello EM, Carrijo TF. (2012) Neotropical termites: Revision of DOI
Rodríguez-León CH, Peña-Venegas CP, Sterling A, Castro D, Mahecha-Virguez LK, Virguez-Díaz YR, Silva-Olaya AM, Guerrero GG, Méndez A. (2021) Soil quality restoration during the natural succession of abandoned cattle pastures in deforested landscapes in the Colombian Amazon. Agronomy 11(12): e2484. 10.3390/agronomy11122484 DOI
Romero-Arias J, Boom A, Wang M, Clitheroe C, Šobotník J, Stiblik P, Bourguignon T, Roisin Y. (2021) Molecular phylogeny and historical biogeography of Apicotermitinae (Blattodea: Termitidae). Systematic Entomology 46(3): 741–756. 10.1111/syen.12486 DOI
Roonwal ML. (1970) Measurements of termites (Isoptera) for taxonomic purposes. Journal of the Zoological Society of India 21: 9–66.
Sanabria C, Dubs F, Lavelle P, Fonte SJ, Barot S. (2016) Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal of Soil Biology 74: 81–92. 10.1016/j.ejsobi.2016.03.008 DOI
Sands WA. (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bulletin of the British Museum (Natural History). Entomology Supplement 18: 1–224. 10.5962/p.192782 DOI
Scheffrahn RH. (2013) PubMed DOI
Scheffrahn R. (2019) Expanded New World distributions of genera in the termite family Kalotermitidae. Sociobiology 66(1): 136–153. 10.13102/sociobiology.v66i1.3492 DOI
Scheffrahn RH, Carrijo TF, Postle AC, Tonini F. (2017) PubMed DOI PMC
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4(1): vey016. 10.1093/ve/vey016 PubMed DOI PMC
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. (2016) W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1): W232–W235. 10.1093/nar/gkw256 PubMed DOI PMC
Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ. (2005) Conservation Biogeography: Assessment and prospect. Diversity & Distributions 11(1): 3–23. 10.1111/j.1366-9516.2005.00143.x DOI