β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA214811
NCI NIH HHS - United States
R01 CA200539
NCI NIH HHS - United States
P01 CA066996
NCI NIH HHS - United States
P01 HL131477
NHLBI NIH HHS - United States
R01 CA211073
NCI NIH HHS - United States
R35 CA197697
NCI NIH HHS - United States
R01 CA239255
NCI NIH HHS - United States
PubMed
32822472
PubMed Central
PMC7714095
DOI
10.1182/blood.2019004664
PII: S0006-4971(20)81982-X
Knihovny.cz E-zdroje
- MeSH
- beta-katenin genetika metabolismus MeSH
- Candida albicans MeSH
- granulocyty metabolismus MeSH
- kandidóza genetika metabolismus MeSH
- myelopoéza * MeSH
- myši transgenní MeSH
- myši MeSH
- protein 2 podobný transkripčnímu faktoru 7 metabolismus MeSH
- receptory faktoru stimulujícího kolonie biosyntéza genetika MeSH
- signální transdukce * MeSH
- transkripční faktory TCF genetika metabolismus MeSH
- upregulace * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- beta-katenin MeSH
- Csf3r protein, mouse MeSH Prohlížeč
- CTNNB1 protein, mouse MeSH Prohlížeč
- protein 2 podobný transkripčnímu faktoru 7 MeSH
- receptory faktoru stimulujícího kolonie MeSH
- Tcf7l2 protein, mouse MeSH Prohlížeč
- transkripční faktory TCF MeSH
The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.
Cancer Science Institute of Singapore National University of Singapore Singapore
Department of Cell and Developmental Biology and
Faculty of Science Charles University Prague Czech Republic
Harvard Stem Cell Institute Harvard Medical School Boston MA
Institute of Hematology and Blood Transfusion Prague Czech Republic; and
Zobrazit více v PubMed
Boettcher S, Manz MG. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 2017;38(5):345-357. PubMed
Daniels DL, Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12(4):364-371. PubMed
Roose J, Molenaar M, Peterson J, et al. . The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998;395(6702):608-612. PubMed
Sekiya T, Zaret KS. Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell. 2007;28(2):291-303. PubMed PMC
Laurenti E, Doulatov S, Zandi S, et al. . The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nat Immunol. 2013;14(7):756-763. PubMed PMC
Wu JQ, Seay M, Schulz VP, et al. . Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line. PLoS Genet. 2012;8(3):e1002565. PubMed PMC
Yu S, Li F, Xing S, Zhao T, Peng W, Xue HH. Hematopoietic and leukemic stem cells have distinct dependence on Tcf1 and Lef1 transcription factors. J Biol Chem. 2016;291(21):11148-11160. PubMed PMC
Gomes I, Sharma TT, Edassery S, Fulton N, Mar BG, Westbrook CA. Novel transcription factors in human CD34 antigen-positive hematopoietic cells. Blood. 2002;100(1):107-119. PubMed
Staal FJ, Luis TC. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem. 2010;109(5):844-849. PubMed
Fleming HE, Janzen V, Lo Celso C, et al. . Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2(3):274-283. PubMed PMC
Luis TC, Weerkamp F, Naber BA, et al. . Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood. 2009;113(3):546-554. PubMed
Zhao C, Blum J, Chen A, et al. . Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12(6):528-541. PubMed PMC
Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood. 1997;89(10):3624-3635. PubMed
Baba Y, Garrett KP, Kincade PW. Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity. 2005;23(6):599-609. PubMed PMC
Reya T, Duncan AW, Ailles L, et al. . A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409-414. PubMed
Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene family in human hematopoiesis. Blood. 1998;92(9):3189-3202. PubMed
Willert K, Brown JD, Danenberg E, et al. . Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448-452. PubMed
Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol. 2006;7(10):1048-1056. PubMed
Scheller M, Huelsken J, Rosenbauer F, et al. . Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol. 2006;7(10):1037-1047. PubMed
Cobas M, Wilson A, Ernst B, et al. . Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med. 2004;199(2):221-229. PubMed PMC
Jeannet G, Scheller M, Scarpellino L, et al. . Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111(1):142-149. PubMed
Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood. 2008;111(1):160-164. PubMed
Luis TC, Naber BA, Roozen PP, et al. . Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell. 2011;9(4):345-356. PubMed
Janeckova L, Fafilek B, Krausova M, et al. . Wnt signaling inhibition deprives small intestinal stem cells of clonogenic capacity. Genesis. 2016;54(3):101-114. PubMed PMC
Shimshek DR, Kim J, Hübner MR, et al. . Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis. 2002;32(1):19-26. PubMed
Boettcher S, Gerosa RC, Radpour R, et al. . Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood. 2014;124(9):1393-1403. PubMed PMC
Kardosova M, Zjablovskaja P, Danek P, et al. . C/EBPγ is dispensable for steady-state and emergency granulopoiesis. Haematologica. 2018;103(8):e331-e335. PubMed PMC
Satake S, Hirai H, Hayashi Y, et al. . C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis. J Immunol. 2012;189(9):4546-4555. PubMed
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109-1121. PubMed
Chen EY, Tan CM, Kou Y, et al. . Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. PubMed PMC
Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA. 1997;94(2):569-574. PubMed PMC
Sakurai M, Kunimoto H, Watanabe N, et al. . Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia. 2014;28(12):2344-2354. PubMed
Gerritsen M, Yi G, Tijchon E, et al. . RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Adv. 2019;3(3):320-332. PubMed PMC
Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation [published correction appears in Science. 2013;342(6156):311]. Science. 2013;341(6146):670-673. PubMed PMC
DeKoter RP, Walsh JC, Singh H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 1998;17(15):4456-4468. PubMed PMC
Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14(5):302-314. PubMed
Hérault A, Binnewies M, Leong S, et al. . Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544(7648):53-58. PubMed PMC
Feder K, Edmaier-Schröger K, Rawat VPS, et al. . Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis. Leukemia. 2020;34(4):1027-1037. PubMed
Gandhirajan RK, Staib PA, Minke K, et al. . Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 2010;12(4):326-335. PubMed PMC
Lepourcelet M, Chen YN, France DS, et al. . Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91-102. PubMed
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480. PubMed
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192-1205. PubMed
Ioannidis V, Beermann F, Clevers H, Held W. The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol. 2001;2(8):691-697. PubMed
Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol. 2003;4(12):1177-1182. PubMed
Ranheim EA, Kwan HC, Reya T, Wang YK, Weissman IL, Francke U. Frizzled 9 knock-out mice have abnormal B-cell development. Blood. 2005;105(6):2487-2494. PubMed
Jin ZX, Kishi H, Wei XC, Matsuda T, Saito S, Muraguchi A. Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells. J Immunol. 2002;169(7):3783-3792. PubMed
Korinek V, Barker N, Morin PJ, et al. . Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275(5307):1784-1787. PubMed
van de Wetering M, Sancho E, Verweij C, et al. . The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241-250. PubMed
Atcha FA, Munguia JE, Li TW, Hovanes K, Waterman ML. A new beta-catenin-dependent activation domain in T cell factor. J Biol Chem. 2003;278(18):16169-16175. PubMed
Hoverter NP, Zeller MD, McQuade MM, et al. . The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition. Nucleic Acids Res. 2014;42(22):13615-13632. PubMed PMC
Atcha FA, Syed A, Wu B, et al. . A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol Cell Biol. 2007;27(23):8352-8363. PubMed PMC
Weise A, Bruser K, Elfert S, et al. . Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res. 2010;38(6):1964-1981. PubMed PMC
Skokowa J, Cario G, Uenalan M, et al. . LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia [published correction appears in Nat Med. 2006;12(11):1329]. Nat Med. 2006;12(10):1191-1197. PubMed
Skokowa J, Fobiwe JP, Dan L, Thakur BK, Welte K. Neutrophil elastase is severely down-regulated in severe congenital neutropenia independent of ELA2 or HAX1 mutations but dependent on LEF-1. Blood. 2009;114(14):3044-3051. PubMed
Gupta K, Kuznetsova I, Klimenkova O, et al. . Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34(+) cells. Blood. 2014;123(16):2550-2561. PubMed PMC
Dong F, Brynes RK, Tidow N, Welte K, Löwenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333(8):487-493. PubMed
Hermans MH, Ward AC, Antonissen C, Karis A, Löwenberg B, Touw IP. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998;92(1):32-39. PubMed
Kobayashi M, Yumiba C, Kawaguchi Y, et al. . Abnormal responses of myeloid progenitor cells to recombinant human colony-stimulating factors in congenital neutropenia. Blood. 1990;75(11):2143-2149. PubMed
Welte K, Zeidler C, Reiter A, et al. . Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood. 1990;75(5):1056-1063. PubMed
Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602-611. PubMed
Hematopoietic stem cell fate under the influence of Ser/Thr protein phosphatases
Ppm1d truncating mutations promote the development of genotoxic stress-induced AML
Chronic inflammation decreases HSC fitness by activating the druggable Jak/Stat3 signaling pathway