β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation

. 2020 Nov 26 ; 136 (22) : 2574-2587.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32822472

Grantová podpora
R01 CA214811 NCI NIH HHS - United States
R01 CA200539 NCI NIH HHS - United States
P01 CA066996 NCI NIH HHS - United States
P01 HL131477 NHLBI NIH HHS - United States
R01 CA211073 NCI NIH HHS - United States
R35 CA197697 NCI NIH HHS - United States
R01 CA239255 NCI NIH HHS - United States

Odkazy

PubMed 32822472
PubMed Central PMC7714095
DOI 10.1182/blood.2019004664
PII: S0006-4971(20)81982-X
Knihovny.cz E-zdroje

The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.

Komentář v

PubMed

Zobrazit více v PubMed

Boettcher S, Manz MG. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 2017;38(5):345-357. PubMed

Daniels DL, Weis WI. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12(4):364-371. PubMed

Roose J, Molenaar M, Peterson J, et al. . The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998;395(6702):608-612. PubMed

Sekiya T, Zaret KS. Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell. 2007;28(2):291-303. PubMed PMC

Laurenti E, Doulatov S, Zandi S, et al. . The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nat Immunol. 2013;14(7):756-763. PubMed PMC

Wu JQ, Seay M, Schulz VP, et al. . Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line. PLoS Genet. 2012;8(3):e1002565. PubMed PMC

Yu S, Li F, Xing S, Zhao T, Peng W, Xue HH. Hematopoietic and leukemic stem cells have distinct dependence on Tcf1 and Lef1 transcription factors. J Biol Chem. 2016;291(21):11148-11160. PubMed PMC

Gomes I, Sharma TT, Edassery S, Fulton N, Mar BG, Westbrook CA. Novel transcription factors in human CD34 antigen-positive hematopoietic cells. Blood. 2002;100(1):107-119. PubMed

Staal FJ, Luis TC. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem. 2010;109(5):844-849. PubMed

Fleming HE, Janzen V, Lo Celso C, et al. . Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2(3):274-283. PubMed PMC

Luis TC, Weerkamp F, Naber BA, et al. . Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood. 2009;113(3):546-554. PubMed

Zhao C, Blum J, Chen A, et al. . Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12(6):528-541. PubMed PMC

Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood. 1997;89(10):3624-3635. PubMed

Baba Y, Garrett KP, Kincade PW. Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity. 2005;23(6):599-609. PubMed PMC

Reya T, Duncan AW, Ailles L, et al. . A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409-414. PubMed

Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene family in human hematopoiesis. Blood. 1998;92(9):3189-3202. PubMed

Willert K, Brown JD, Danenberg E, et al. . Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448-452. PubMed

Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol. 2006;7(10):1048-1056. PubMed

Scheller M, Huelsken J, Rosenbauer F, et al. . Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol. 2006;7(10):1037-1047. PubMed

Cobas M, Wilson A, Ernst B, et al. . Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med. 2004;199(2):221-229. PubMed PMC

Jeannet G, Scheller M, Scarpellino L, et al. . Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111(1):142-149. PubMed

Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood. 2008;111(1):160-164. PubMed

Luis TC, Naber BA, Roozen PP, et al. . Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell. 2011;9(4):345-356. PubMed

Janeckova L, Fafilek B, Krausova M, et al. . Wnt signaling inhibition deprives small intestinal stem cells of clonogenic capacity. Genesis. 2016;54(3):101-114. PubMed PMC

Shimshek DR, Kim J, Hübner MR, et al. . Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis. 2002;32(1):19-26. PubMed

Boettcher S, Gerosa RC, Radpour R, et al. . Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood. 2014;124(9):1393-1403. PubMed PMC

Kardosova M, Zjablovskaja P, Danek P, et al. . C/EBPγ is dispensable for steady-state and emergency granulopoiesis. Haematologica. 2018;103(8):e331-e335. PubMed PMC

Satake S, Hirai H, Hayashi Y, et al. . C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis. J Immunol. 2012;189(9):4546-4555. PubMed

Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109-1121. PubMed

Chen EY, Tan CM, Kou Y, et al. . Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. PubMed PMC

Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA. 1997;94(2):569-574. PubMed PMC

Sakurai M, Kunimoto H, Watanabe N, et al. . Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia. 2014;28(12):2344-2354. PubMed

Gerritsen M, Yi G, Tijchon E, et al. . RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Adv. 2019;3(3):320-332. PubMed PMC

Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation [published correction appears in Science. 2013;342(6156):311]. Science. 2013;341(6146):670-673. PubMed PMC

DeKoter RP, Walsh JC, Singh H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 1998;17(15):4456-4468. PubMed PMC

Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14(5):302-314. PubMed

Hérault A, Binnewies M, Leong S, et al. . Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature. 2017;544(7648):53-58. PubMed PMC

Feder K, Edmaier-Schröger K, Rawat VPS, et al. . Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis. Leukemia. 2020;34(4):1027-1037. PubMed

Gandhirajan RK, Staib PA, Minke K, et al. . Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 2010;12(4):326-335. PubMed PMC

Lepourcelet M, Chen YN, France DS, et al. . Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91-102. PubMed

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480. PubMed

Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192-1205. PubMed

Ioannidis V, Beermann F, Clevers H, Held W. The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol. 2001;2(8):691-697. PubMed

Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol. 2003;4(12):1177-1182. PubMed

Ranheim EA, Kwan HC, Reya T, Wang YK, Weissman IL, Francke U. Frizzled 9 knock-out mice have abnormal B-cell development. Blood. 2005;105(6):2487-2494. PubMed

Jin ZX, Kishi H, Wei XC, Matsuda T, Saito S, Muraguchi A. Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells. J Immunol. 2002;169(7):3783-3792. PubMed

Korinek V, Barker N, Morin PJ, et al. . Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275(5307):1784-1787. PubMed

van de Wetering M, Sancho E, Verweij C, et al. . The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241-250. PubMed

Atcha FA, Munguia JE, Li TW, Hovanes K, Waterman ML. A new beta-catenin-dependent activation domain in T cell factor. J Biol Chem. 2003;278(18):16169-16175. PubMed

Hoverter NP, Zeller MD, McQuade MM, et al. . The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition. Nucleic Acids Res. 2014;42(22):13615-13632. PubMed PMC

Atcha FA, Syed A, Wu B, et al. . A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol Cell Biol. 2007;27(23):8352-8363. PubMed PMC

Weise A, Bruser K, Elfert S, et al. . Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res. 2010;38(6):1964-1981. PubMed PMC

Skokowa J, Cario G, Uenalan M, et al. . LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia [published correction appears in Nat Med. 2006;12(11):1329]. Nat Med. 2006;12(10):1191-1197. PubMed

Skokowa J, Fobiwe JP, Dan L, Thakur BK, Welte K. Neutrophil elastase is severely down-regulated in severe congenital neutropenia independent of ELA2 or HAX1 mutations but dependent on LEF-1. Blood. 2009;114(14):3044-3051. PubMed

Gupta K, Kuznetsova I, Klimenkova O, et al. . Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34(+) cells. Blood. 2014;123(16):2550-2561. PubMed PMC

Dong F, Brynes RK, Tidow N, Welte K, Löwenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333(8):487-493. PubMed

Hermans MH, Ward AC, Antonissen C, Karis A, Löwenberg B, Touw IP. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998;92(1):32-39. PubMed

Kobayashi M, Yumiba C, Kawaguchi Y, et al. . Abnormal responses of myeloid progenitor cells to recombinant human colony-stimulating factors in congenital neutropenia. Blood. 1990;75(11):2143-2149. PubMed

Welte K, Zeidler C, Reiter A, et al. . Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood. 1990;75(5):1056-1063. PubMed

Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602-611. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...