Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26274496
PubMed Central
PMC4537298
DOI
10.1371/journal.pone.0135627
PII: PONE-D-15-05275
Knihovny.cz E-zdroje
- MeSH
- Archaea * klasifikace genetika MeSH
- Bacteria * klasifikace genetika MeSH
- biodiverzita MeSH
- hnůj mikrobiologie MeSH
- mikrobiální společenstva MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S MeSH
- skot * MeSH
- zemědělství MeSH
- životní prostředí MeSH
- zvířata MeSH
- Check Tag
- skot * MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- hnůj MeSH
- RNA ribozomální 16S MeSH
Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.
Zobrazit více v PubMed
Nacke H, Thurmer A, Wollherr A, Will C, Hodac L, Herold N, et al. Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. PLOS One. 2011;6(2). 10.1371/journal.pone.0017000 . PubMed DOI PMC
Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, et al. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes. Applied and Environmental Microbiology. 2010;76(20):6751–9. 10.1128/AEM.01063-10 . PubMed DOI PMC
Yuan Y, Si G, Wang J, Luo T, Zhang G. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. Fems Microbiology Ecology. 2014;87(1):121–32. 10.1111/1574-6941.12197 . PubMed DOI
Auguet J, Barberan A, Casamayor E. Global ecological patterns in uncultured Archaea. Isme Journal. 2010;4(2):182–90. 10.1038/ismej.2009.109 . PubMed DOI
Hynšt J, Šimek M, Bruček P, Petersen S. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area. Agriculture Ecosystems & Environment. 2007;120(2–4):269–79. 10.1016/j.agee.2006.10.003 . DOI
O'Callaghan M, Gerard E, Carter P, Lardner R, Sarathchandra U, Burch G, et al. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biology & Biochemistry. 2010;42(9):1425–36. 10.1016/j.soilbio.2010.05.003 . DOI
Cookson W, Cornforth I. Dicyandiamide slows nitrification in dairy cattle urine patches: effects on soil solution composition, soil pH and pasture yield. Soil Biology & Biochemistry. 2002;34(10):1461–5. 10.1016/S0038-0717(02)00090-1 . DOI
Radl V, Gattinger A, Chroňáková A, Němcová A, Čuhel J, Šimek M, et al. Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils. Isme Journal. 2007;1(5):443–52. 10.1038/ismej.2007.60 . PubMed DOI
Chroňáková A, Ascher J, Jirout J, Ceccherini MT, Elhottová D, Pietramellara G, et al. Cattle impact on composition of archaeal, bacterial, and fungal communities by comparative fingerprinting of total and extracellular DNA. Biology and Fertility of Soils. 2013;49(3):351–61. 10.1007/s00374-012-0726-x . DOI
Elhottová D, Koubová A, Šimek M, Cajthaml T, Jirout J, Esperschuetz J, et al. Changes in soil microbial communities as affected by intensive cattle husbandry. Applied Soil Ecology. 2012;58:56–65. 10.1016/j.apsoil.2012.03.009 . DOI
Koubová A, Goberna M, Šimek M, Chroňáková A, Pižl V, Insam H, et al. Effects of the earthworm Eisenia andrei on methanogens in a cattle-impacted soil: A microcosm study. European Journal of Soil Biology. 2012;48:32–40. 10.1016/j.ejsobi.2011.09.007 . DOI
Radl V, Chroňáková A, Čuhel J, Šimek M, Elhottová D, Welzl G, et al. Bacteria dominate ammonia oxidation in soils used for outdoor cattle overwintering. Applied Soil Ecology. 2014;77:68–71. 10.1016/j.apsoil.01.008 . DOI
Chroňáková A, Radl V, Čuhel J, Šimek M, Elhottová D, Engel M, et al. Overwintering management on upland pasture causes shifts in an abundance of denitrifying microbial communities, their activity and N2O-reducing ability. Soil Biology & Biochemistry. 2009;41(6):1132–8. 10.1016/j.soilbio.2009.02.019 . DOI
Bannert A, Bogen C, Esperschuetz J, Koubová A, Buegger F, Fischer D, et al. Anaerobic oxidation of methane in grassland soils used for cattle husbandry. Biogeosciences. 2012;9(10):3891–9. 10.5194/bg-9-3891-2012 . DOI
Bradley RL, Chroňáková A, Elhottová D, Šimek M. Interactions between land-use history and earthworms control gross rates of soil methane production in an overwintering pasture. Soil Biology & Biochemistry. 2012;53:64–71. 10.1016/j.soilbio.2012.04.025 . DOI
Hulbert S. Pseudoreplication and the design of ecological field experiments. Ecological Monographs; 1984. p. 187–211.
Zbíral J, Honsa I. Soil analysis, part I Brno, Czech Republic: Central Institute for Supervising and testing in Agriculture; 2010. p. 290 (In Czech).
Zbíral J, Malý S, Váňa M, Čuhel J, Fojtová E. Soil analysis, part III Brno, Czech republic: Central Institute for Supervising and Testing in Agriculture; 2011. p. 253 (In Czech).
Lane D, Pace B, Olsen G, Stahl D, Sogin M, Pace N. Rapid-determination of 16S ribosomal-RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America. 1985;82(20):6955–9. 10.1073/pnas.82.20.6955 . PubMed DOI PMC
Juretschko S, Timmermann G, Schmid M, Schleifer K, Pommerening-Roser A, Koops H, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology. 1998;64(8):3042–51. . PubMed PMC
Nicol G, Tscherko D, Embley T, Prosser J. Primary succession of soil Crenarchaeota across a receding glacier foreland. Environmental Microbiology. 2005;7(3):337–47. 10.1111/j.1462-2920.2005.00698.x|10.1111/j.1462-2920.2004.00698.x. . PubMed DOI
Bano N, Ruffin S, Ransom B, Hollibaugh J. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with antarctic assemblages. Applied and Environmental Microbiology. 2004;70(2):781–9. 10.1128/AEM.70.2.781-789.2004 . PubMed DOI PMC
Quince C, Lanzén A, Davenport R, Turnbaugh P. Removing Noise From Pyrosequenced Amplicons. Bmc Bioinformatics. 2011;12 10.1186/1471-2105-12-38 . PubMed DOI PMC
Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson B, James P, et al. Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(52):21206–11. 10.1073/pnas.1109000108 . PubMed DOI PMC
Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. 10.1093/bioinformatics/btq461 . PubMed DOI
Lanzén A, Jorgensen S, Huson D, Gorfer M, Grindhaug S, Jonassen I, et al. CREST—Classification Resources for Environmental Sequence Tags. PLOS One. 2012;7(11). 10.1371/journal.pone.0049334 . PubMed DOI PMC
Oksanen J, Kindt R, Legendre P, O´Hara B, Stevens M. The vegan package. Community ecology package. R package version 1. pp. 16–33. Available: http://cran.r-project.org/web/packages/vegan/2007.
Warnes G, B, Bonebakker L, Gentleman R, Liaw W, Lumley T, Maechler M, et al. gplots: various programming tools for plotting data. Available: http://cran.r-project.org/package/gplots2012.
ter Braak C, Šmilauer P. Canoco Reference Manual and User´s Guide: Software for ordination (version 5.0). Ithaca: Microcomputer Power, 496 p.2012.
Clarke K. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 1993;18(1):117–43. 10.1111/j.1442-9993.1993.tb00438.x . DOI
Clarke K, Gorley R. PRIMER v6: User Manual/Tutorial. Plymouth2006, p. 192.
Hansel C, Fendorf S, Jardine P, Francis C. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Applied and Environmental Microbiology. 2008;74(5):1620–33. 10.1128/AEM.01787-07 . PubMed DOI PMC
Nicol G, Glover L, Prosser J. Spatial analysis of archaeal community structure in grassland soil. Applied and Environmental Microbiology. 2003;69(12):7420–9. 10.1128/AEM.69.12.7420-7429.2003 . PubMed DOI PMC
Nicol G, Webster G, Glover L, Prosser J. Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Environmental Microbiology. 2004;6(8):861–7. 10.1111/j.1462-2920.2004.00627.x . PubMed DOI
Oton E, Quince C, Nicol G, Prosser J, Gubry-Rangin C. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME J; 2015. PubMed PMC
Lehtovirta L, Prosser J, Nicol G. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. Fems Microbiology Ecology. 2009;70(3):367–76. 10.1111/j.1574-6941.2009.00748.x . PubMed DOI
Chroňáková A, Horák A, Elhottová D, Kristůfek V. Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia). Folia Microbiologica. 2009;54(5):436–46. 10.1007/s12223-009-0061-2 . PubMed DOI
Kemnitz D, Kolb S, Conrad R. High abundance of Crenarchaeota in a temperate acidic forest soil. Fems Microbiology Ecology. 2007;60(3):442–8. 10.1111/j.1574-6941.2007.00310.x . PubMed DOI
Takai K, Moser D, DeFlaun M, Onstott T, Fredrickson J. Archaeal diversity in waters from deep South African gold mines. Applied and Environmental Microbiology. 2001;67(12):5750–60. 10.1128/AEM.67.21.5750-5760.2001 . PubMed DOI PMC
Koubová A, Goberna M, Šimek M, Chrońáková A, Pižl V, Insam H, et al. Effects of the earthworm Eisenia andrei on methanogens in a cattle-impacted soil: A microcosm study. European Journal of Soil Biology. 2012;48:32–40. 10.1016/j.ejsobi.2011.09.007 . DOI
Kubo K, Lloyd K, Biddle J, Amann R, Teske A, Knittel K. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. Isme Journal. 2012;6(10):1949–65. 10.1038/ismej.2012.37 . PubMed DOI PMC
Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Applied and Environmental Microbiology. 2003;69(12):7224–35. 10.1128/AEM.69.12.7224-7235.2003 . PubMed DOI PMC
Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. Isme Journal. 2014;8(3):650–9. 10.1038/ismej.2013.174 . PubMed DOI PMC
Beeman R, Suflita J. Environmental-factors influencing methanogenesis in a shallow anoxic aquifer—a field and laboratory study. Journal of Industrial Microbiology. 1990;5(1):45–58. 10.1007/BF01569605 . PubMed DOI
Paul J, Beauchamp E. Relationship between volatile fatty-acids, total ammonia, and pH in manure slurries. Biological Wastes. 1989;29(4):313–8. 10.1016/0269-7483(89)90022-0 . DOI
Laughlin R, Rutting T, Mueller C, Watson C, Stevens R. Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil. Applied Soil Ecology. 2009;42(1):25–30. 10.1016/j.apsoil.2009.01.004 . DOI
Bernal M, Alburquerque J, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology. 2009;100(22):5444–53. 10.1016/j.biortech.2008.11.027 . PubMed DOI
Mackie R, Stroot P, Varel V. Biochemical identification and biological origin of key odor components in livestock waste. Journal of Animal Science. 1998;76(5):1331–42. . PubMed
Yamamoto N, Asano R, Yoshii H, Otawa K, Nakai Y. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Applied Microbiology and Biotechnology. 2011;90(4):1501–10. 10.1007/s00253-011-3153-2 . PubMed DOI
Gattinger A, Hoefle M, Schloter M, Embacher A, Bohme F, Munch J, et al. Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil. Environmental Microbiology. 2007;9(3):612–24. 10.1111/j.1462-2920.2006.01181.x . PubMed DOI
Stumm C, Gijzen H, Vogels G. Association of methanogenic bacteria with ovine rumen ciliates. British Journal of Nutrition. 1982;47(1):95–&. 10.1079/BJN19820013 . PubMed DOI
Hook S, Wright A, McBride B. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea-an International Microbiological Journal. 2010. 10.1155/2010/945785 . PubMed DOI PMC
Janssen P, Kirs M. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology. 2008;74(12):3619–25. 10.1128/AEM.02812-07 . PubMed DOI PMC
Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology. 2013;19(2):637–48. 10.1111/gcb.12065 . PubMed DOI
Zhou X, Wang J, Hao Y, Wang Y. Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe. Biology and Fertility of Soils. 2010;46(8):817–24. 10.1007/s00374-010-0487-3 . DOI
Janssen P. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology. 2006;72(3):1719–28. 10.1128/AEM.72.3.1719-1728.2006 . PubMed DOI PMC
Li R, Khafipour E, Krause D, Entz M, de Kievit T, Fernando W. Pyrosequencing Reveals the Influence of Organic and Conventional Farming Systems on Bacterial Communities. PLOS One. 2012;7(12). 10.1371/journal.pone.0051897 . PubMed DOI PMC
Ding G, Radl V, Schloter-Hai B, Jechalke S, Heuer H, Smalla K, et al. Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine. PLOS One. 2014;9(3). 10.1371/journal.pone.0092958 . PubMed DOI PMC
Philippot L, Čuhel J, Saby NPA, Cheneby D, Chroňáková A, Bru D, et al. Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environmental Microbiology. 2009;11(6):1518–26. 10.1111/j.1462-2920.2009.01879.x . PubMed DOI
Bergmann G, Bates S, Eilers K, Lauber C, Caporaso J, Walters W, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology & Biochemistry. 2011;43(7):1450–5. 10.1016/j.soilbio.2011.03.012 . PubMed DOI PMC
Hill P, Krištůfek V, Dijkhuizen L, Boddy C, Kroetsch D, van Elsas J. Land Use Intensity Controls Actinobacterial Community Structure. Microbial Ecology. 2011;61(2):286–302. 10.1007/s00248-010-9752-0 . PubMed DOI PMC
Rousk J, Baath E, Brookes P, Lauber C, Lozupone C, Caporaso J, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. Isme Journal. 2010;4(10):1340–51. 10.1038/ismej.2010.58 . PubMed DOI
Bardgett R, Jones A, Jones D, Kemmitt S, Cook R, Hobbs P. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology & Biochemistry. 2001;33(12–13):1653–64. 10.1016/S0038-0717(01)00086-4 . DOI
Clegg C. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Applied Soil Ecology. 2006;31(1–2):73–82. 10.1016/j.apsoil.2005.04.003 . DOI
Chan O, Casper P, Sha L, Feng Z, Fu Y, Yang X, et al. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. Fems Microbiology Ecology. 2008;64(3):449–58. 10.1111/j.1574-6941.2008.00488.x . PubMed DOI
Acosta-Martinez V, Dowd S, Sun Y, Allen V. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology & Biochemistry. 2008;40(11):2762–70. 10.1016/j.soilbio.2008.07.022 . DOI
Fierer N, Bradford M, Jackson R. Toward an ecological classification of soil bacteria. Ecology. 2007;88(6):1354–64. 10.1890/05-1839 . PubMed DOI
Krzmarzick M, Crary B, Harding J, Oyerinde O, Leri A, Myneni S, et al. Natural Niche for Organohalide-Respiring Chloroflexi. Applied and Environmental Microbiology. 2012;78(2):393–401. 10.1128/AEM.06510-11 . PubMed DOI PMC
SRA
SRP041238