Optical Properties of Titania Coatings Prepared by Inkjet Direct Patterning of a Reverse Micelles Sol-Gel Composition

. 2015 Aug 12 ; 20 (8) : 14552-64. [epub] 20150812

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26274944

Thin layers of titanium dioxide were fabricated by direct inkjet patterning of a reverse micelles sol-gel composition onto soda-lime glass plates. Several series of variable thickness samples were produced by repeated overprinting and these were further calcined at different temperatures. The resulting layers were inspected by optical and scanning electronic microscopy and their optical properties were investigated by spectroscopic ellipsometry in the range of 200-1000 nm. Thus the influence of the calcination temperature on material as well as optical properties of the patterned micellar titania was studied. The additive nature of the deposition process was demonstrated by a linear dependence of total thickness on the number of printed layers without being significantly affected by the calcination temperature. The micellar imprints structure of the titania layer resulted into significant deviation of measured optical constants from the values reported for bulk titania. The introduction of a void layer into the ellipsometric model was found necessary for this particular type of titania and enabled correct ellipsometric determination of layer thickness, well matching the thickness values from mechanical profilometry.

Zobrazit více v PubMed

Sharma S.K., Vishwas M., Rao K.N., Mohan S., Reddy D.S., Gowda K.V.A. Structural and optical investigations of TiO2 films deposited on transparent substrates by sol-gel technique. J. Alloys Compd. 2009;471:244–247. doi: 10.1016/j.jallcom.2008.03.058. DOI

Ben Naceur J., Mechiakh R., Bousbih F., Chtourou R. Appl. Surf. Sci. Vol. 257. Mechiakh; 2011. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating; pp. 10699–10703. DOI

Viseu T.M.R., Almeida B., Stchakovsky M., Drevillon B., Ferreira M.I.C., Sousa J.B. Optical characterisation of anatase: A comparative study of the bulk crystal and the polycrystalline thin film. Thin Solid Films. 2001;401:216–224. doi: 10.1016/S0040-6090(01)01479-1. DOI

Li S., Qiu J., Ling M., Peng F., Wood B., Zhang S. Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications: From uniform ink-droplet to TiO2 photoelectrode for dye-sensitized solar cells. ACS Appl. Mater. 2013;5:11129–11135. doi: 10.1021/am403325a. PubMed DOI

Alvarez-Herrero A., Fort A.J., Guerrero H., Bernabeu E. Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties. Thin Solid Films. 1999;349:212–219. doi: 10.1016/S0040-6090(99)00145-5. DOI

Attia S.M., Wang J., Wu G.M., Shen J., Ma J.H. Review on sol-gel derived coatings: Process, techniques and optical applications. J. Mater. Sci. Technol. 2002;18:211–218.

Akpan U.G., Hameed B.H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen. 2010;375:1–11. doi: 10.1016/j.apcata.2009.12.023. DOI

Arconada N., Duran A., Suarez S., Portela R., Coronado J.M., Sanchez B., Castro Y. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel. Appl. Catal. B Environ. 2009;86:1–7. doi: 10.1016/j.apcatb.2008.07.021. DOI

Kluson P., Kacer P. Preliminary specification of the structure of photoactive TiO2 by the surfactant-mediated sol-gel method. Chem. Listy. 2000;94:432–436.

Macwan D.P., Dave P.N., Chaturvedi S. A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater. Sci. 2011;46:3669–3686. doi: 10.1007/s10853-011-5378-y. DOI

Mechiakh R., Ben Sedrine N., Chtourou R., Bensaha R. Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol-gel dip coating. Appl. Surf. Sci. 2010;257:670–676. doi: 10.1016/j.apsusc.2010.08.008. DOI

Yokosuka Y., Oki K., Nishikiori H., Tatsumi Y., Tanaka N., Fujii T. Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol-gel process. Res. Chem. Intermed. 2009;35:43–53. doi: 10.1007/s11164-008-0019-z. DOI

Bartkova H., Kluson P., Bartek L., Drobek M., Cajthaml T., Krysa J. Photoelectrochemical and photocatalytic properties of titanium (IV) oxide nanoparticulate layers. Thin Solid Films. 2007;515:8455–8460. doi: 10.1016/j.tsf.2007.03.121. DOI

Krebs F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells. 2009;93:394–412. doi: 10.1016/j.solmat.2008.10.004. DOI

Heinzl J., Hertz C.H. Ink-jet printing. Adv. Imaging Electron Phys. 1985;65:91–171.

Calvert P. Inkjet printing for materials and devices. Chem. Mater. 2001;13:3299–3305. doi: 10.1021/cm0101632. DOI

Morozova M., Kluson P., Dzik P., Vesely M., Baudys M., Krysa J., Solcova O. The influence of various deposition techniques on the photoelectrochemical properties of the titanium dioxide thin film. J. Sol-Gel Sci. Technol. 2013;65:452–458. doi: 10.1007/s10971-012-2957-6. DOI

Morozova M., Kluson P., Krysa J., Dzik P., Vesely M., Solcova O. Thin TiO2 films prepared by inkjet printing of the reverse micelles sol-gel composition. Sens. Actuators B. 2011;160:371–378. doi: 10.1016/j.snb.2011.07.063. DOI

Dzik P., Morozova M., Kluson P., Vesely M. Photocatalytic and self-cleaning properties of titania coatings prepared by inkjet direct patterning of a reverse micelles sol-gel composition. J. Adv. Oxid. Technol. 2012;15:89–97.

Dzik P., Vesely M., Kralova M., Neumann-Spallart M. Ink-jet printed planar electrochemical cells. Appl. Catal. B Environ. 2015;178:186–191. doi: 10.1016/j.apcatb.2014.09.030. DOI

Vidmar T., Topic M., Dzik P., Opara Krasovec U. Inkjet printing of sol-gel derived tungsten oxide inks. Sol. Energy Mater. Sol. Cells. 2014;125:87–95. doi: 10.1016/j.solmat.2014.02.023. DOI

Cerna M., Vesely M., Dzik P., Guillard Ch., Puzenat E., Lepicova M. Fabrication, characterization and photocatalytic activity of TiO2 layers prepared by inkjet printing of stabilized nanocrystalline suspensions. Appl. Catal. B Environ. 2013;138:84–94. doi: 10.1016/j.apcatb.2013.02.035. DOI

Oh Y., Yoon H.G., Lee S.N., Kim H.K., Kim J. Inkjet-printing of TiO2 co-solvent ink: From uniform ink-droplet to TiO2 photoelectrode for dye-sensitized solar cells. J. Electrochem. Soc. 2012;159:B34–B38. doi: 10.1149/2.024201jes. DOI

Bao B., Li M., Li Y., Jiang J., Gu Z., Zhang X., Jiang L., Song Y. Patterning fluorescent quantum dot nanocomposites by reactive inkjet printing. Small. 2015;11:1649–1654. doi: 10.1002/smll.201403005. PubMed DOI

Kuang M., Wang J., Bao B., Li F., Wang L., Jiang L., Song Y. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line. Adv. Opt. Mater. 2014;2:34–38. doi: 10.1002/adom.201300369. DOI

Morozova M., Kluson P., Krysa J., Zlamal M., Solcova O., Kment S., Steck T. Role of the template molecular structure on the photo-electrochemical functionality of the sol-gel titania thin films. J. Sol-Gel Sci. Technol. 2009;52:398–407. doi: 10.1007/s10971-009-2035-x. DOI

Mardare D., Hones P. Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements. Mater. Sci. Eng. B. 1999;68:42–47. doi: 10.1016/S0921-5107(99)00335-9. DOI

Cerna M., Vesely M., Dzik P. Physical and chemical properties of titanium dioxide printed layers. Catal. Today. 2011;161:97–104. doi: 10.1016/j.cattod.2010.11.019. DOI

Synowicki R.A. Suppression of backside reflections from transparent substrates. Phys. Status Solidi C. 2008;5:1085–1088. doi: 10.1002/pssc.200777873. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...