Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
281633
European Research Council - International
I 1628
Austrian Science Fund FWF - Austria
PubMed
26303516
PubMed Central
PMC4642509
DOI
10.1038/srep13381
PII: srep13381
Knihovny.cz E-zdroje
- MeSH
- Amoeba klasifikace mikrobiologie MeSH
- buněčné jádro mikrobiologie MeSH
- cytoplazma mikrobiologie MeSH
- druhová specificita MeSH
- Gammaproteobacteria klasifikace izolace a purifikace fyziologie MeSH
- symbióza fyziologie MeSH
- vodní organismy klasifikace izolace a purifikace mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Amoebae play an important ecological role as predators in microbial communities. They also serve as niche for bacterial replication, harbor endosymbiotic bacteria and have contributed to the evolution of major human pathogens. Despite their high diversity, marine amoebae and their association with bacteria are poorly understood. Here we describe the isolation and characterization of two novel marine amoebae together with their bacterial endosymbionts, tentatively named 'Candidatus Occultobacter vannellae' and 'Candidatus Nucleophilum amoebae'. While one amoeba strain is related to Vannella, a genus common in marine habitats, the other represents a novel lineage in the Amoebozoa. The endosymbionts showed only low similarity to known bacteria (85-88% 16S rRNA sequence similarity) but together with other uncultured marine bacteria form a sister clade to the Coxiellaceae. Using fluorescence in situ hybridization and transmission electron microscopy, identity and intracellular location of both symbionts were confirmed; one was replicating in host-derived vacuoles, whereas the other was located in the perinuclear space of its amoeba host. This study sheds for the first time light on a so far neglected group of protists and their bacterial symbionts. The newly isolated strains represent easily maintainable model systems and pave the way for further studies on marine associations between amoebae and bacterial symbionts.
Department of Botany and Zoology Faculty of Science Masaryk University 61137 Brno Czech Republic
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Institute of Parasitology Biology Centre CAS Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Rodríguez-Zaragoza S. Ecology of free-living amoebae. Crit. Rev. Microbiol. 20, 225–241 (1994). PubMed
Khan N. A. Acanthamoeba: Biology and Pathogenesis. (Horizon Scientific Press, 2009).
Adl S. M. et al.. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–514 (2012). PubMed PMC
Cavalier-Smith T. et al.. Multigene phylogeny resolves deep branching of Amoebozoa. Mol. Phylogenet. Evol. 83, 293–304 (2015). PubMed
Smirnov A. V. in Encyclopedia of Microbiology. 558–577 (Elsevier, 2008).
Barker J. & Brown M. R. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiol. Read. Engl. 140, 1253–1259 (1994). PubMed
Greub G. & Raoult D. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17, 413–433 (2004). PubMed PMC
Horn M. & Wagner M. Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol. 51, 509–514 (2004). PubMed
Molmeret M., Horn M., Wagner M., Santic M. & Abu Kwaik Y. Amoebae as training grounds for intracellular bacterial pathogens. Appl. Environ. Microbiol. 71, 20–28 (2005). PubMed PMC
Schmitz-Esser S. et al.. Diversity of bacterial endosymbionts of environmental acanthamoeba isolates. Appl. Environ. Microbiol. 74, 5822–31 (2008). PubMed PMC
Lagkouvardos I., Shen J. & Horn M. Improved axenization method reveals complexity of symbiotic associations between bacteria and acanthamoebae. Environ. Microbiol. Rep. 6, 383–388 (2014). PubMed
Pagnier I. et al.. Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol. Direct 10, 1–17 (2015). PubMed PMC
Horn M. Chlamydiae as symbionts in eukaryotes. Annu. Rev. Microbiol. 62, 113–31 (2008). PubMed
Tosetti N., Croxatto A. & Greub G. Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host–pathogen interactions. Microb. Pathog. 77, 125–130 (2014). PubMed
Pizzetti I., Fazi S., Fuchs B. M. & Amann R. High abundance of novel environmental chlamydiae in a Tyrrhenian coastal lake (Lago di Paola, Italy). Environ. Microbiol. Rep. 4, 446–452 (2012). PubMed
Dyková I. & Kostka M. Illustrated guide to culture collection of free-living amoebae. (Academia, 2013). at < http://www.muni.cz/research/publications/1091345> Accessed on 3rd July 2015.
Schneider C. A., Rasband W. S. & Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed PMC
Daims H., Stoecker K. & Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Mol. Microb. Ecol. 213, 239–239 (2005).
Amann R. & Binder B. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–25 (1990). PubMed PMC
Daims H., Brühl A., Amann R., Schleifer K. H. & Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–44 (1999). PubMed
Ludwig W. et al.. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004). PubMed PMC
Loy A. et al.. probeCheck–a central resource for evaluating oligonucleotide probe coverage and specificity. Environ. Microbiol. 10, 2894–2898 (2008). PubMed PMC
Yilmaz L. S., Parnerkar S. & Noguera D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011). PubMed PMC
Medlin L., Elwood H. J., Stickel S. & Sogin M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988). PubMed
Hillis D. M. & Dixon M. T. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453 (1991). PubMed
Juretschko S. et al.. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiolgy 64, 3042–3051 (1998). PubMed PMC
Loy A., Lehner A. & Lee N. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68, 5064–5081 (2002). PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
Ronquist F. et al.. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–42 (2012). PubMed PMC
Quast C. et al.. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6 (2013). PubMed PMC
Altschul S., Gish W. & Miller W. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Wheeler D. L. et al.. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 36, D13–21 (2008). PubMed PMC
Lartillot N., Lepage T. & Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinforma. Oxf. Engl. 25, 2286–2288 (2009). PubMed
Pruitt K. D., Tatusova T., Brown G. R. & Maglott D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012). PubMed PMC
Farone A. L., Berk S. G., Farone M. B. & Gunderson J. H. The isolation and characterization of naturally-occurring amoeba-resistant bacteria from water samples. (2010). at < http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/8114/report/F> Accessed on 3rd July 2015.
Page F. C. Fine-structure of some marine strains of Platyamoeba (Gymnamoebia, Thecamoebidae). Protistologica 16, 605–612 (1980).
Smirnov A. V., Nassonova E. S., Chao E. & Cavalier-Smith T. Phylogeny, evolution, and taxonomy of vannellid amoebae. Protist 158, 295–324 (2007). PubMed
Patsyuk M. New Gymnamoebae Species (Gymnamoebia) in the Fauna of Ukraine. Vestn. Zool. 46, e–7–e–13 (2012).
Tekle Y. I. et al.. Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘Amoebozoa’ upon removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol. 47, 339–352 (2008). PubMed
Lahr D. J. G., Grant J., Nguyen T., Lin J. H. & Katz L. A. Comprehensive phylogenetic reconstruction of amoebozoa based on concatenated analyses of SSU-rDNA and actin genes. PloS One 6, e22780 (2011). PubMed PMC
Corsaro D., Pages G. S., Catalan V., Loret J.-F. & Greub G. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants. Int. J. Hyg. Environ. Health 213, 158–166 (2010). PubMed
Delafont V., Brouke A., Bouchon D., Moulin L. & Héchard Y. Microbiome of free-living amoebae isolated from drinking water. Water Res. 47, 6958–6965 (2013). PubMed
Walochnik J. et al.. Discrimination between Clinically Relevant and Nonrelevant Acanthamoeba Strains Isolated from Contact Lens- Wearing Keratitis Patients in Austria. J. Clin. Microbiol. 38, 3932–3936 (2000). PubMed PMC
Maghsood A. H. et al.. Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates. J. Med. Microbiol. 54, 755–759 (2005). PubMed
Fritsche T. R. et al.. In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. Appl. Environ. Microbiol. 65, 206–212 (1999). PubMed PMC
Horn M., Fritsche T. R., Gautom R. K., Schleifer K.-H. & Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ. Microbiol. 1, 357–367 (1999). PubMed
Matsuo J. et al.. Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental Acanthamoeba isolates. Environ. Microbiol. Rep. 2, 524–533 (2010). PubMed
Lamoth F. & Greub G. Amoebal pathogens as emerging causal agents of pneumonia. FEMS Microbiol. Rev. 34, 260–280 (2010). PubMed
La Scola B. & Raoult D. Survival of Coxiella burnetii within free-living amoeba Acanthamoeba castellanii. Clin. Microbiol. Infect. 7, 75–79 (2001). PubMed
La Scola B. et al.. Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int. J. Syst. Evol. Microbiol. 54, 699–703 (2004). PubMed
Williams K. P. et al.. Phylogeny of gammaproteobacteria. J. Bacteriol. 192, 2305–14 (2010). PubMed PMC
Cordaux R. et al.. Molecular characterization and evolution of arthropod-pathogenic Rickettsiella bacteria. Appl. Environ. Microbiol. 73, 5045–5047 (2007). PubMed PMC
Smith T. A., Driscoll T., Gillespie J. J. & Raghavan R. A Coxiella-like Endosymbiont is a potential vitamin source for the Lone Star Tick. Genome Biol. Evol. (2015). 10.1093/gbe/evv016. PubMed DOI PMC
Fujishima M. & Kodama Y. Endosymbionts in Paramecium. Eur. J. Protistol. 48, 124–37 (2012). PubMed
Schulz F. & Horn M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol. 25, 339–346 (2015). PubMed
Michel R., Hauroder B., Muller K. & Zoller L. An environmental Naegleria-strain, unable to form cysts-turned out to harbour two different species of endocytobionts. Endocytobiosis Cell Res. 118, 115–118 (1999).
Walochnik J., Muller K., Aspock H. & Michel R. An endocytobiont harbouring Naegleria strain identified as N. clarki De Jonckheere, 1994. Acta Protozool. 44, 301–310 (2005).
Schulz F. et al.. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 8, 1634–1644 (2014). PubMed PMC
Matzke A. J. M., Weiger T. M. & Matzke M. Ion channels at the nucleus: electrophysiology meets the genome. Mol. Plant 3, 642–652 (2010). PubMed PMC
Kim M. C., Chung W. S., Yun D.-J. & Cho M. J. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant 2, 13–21 (2009). PubMed PMC
Hori M., Fujii K. & Fujishima M. Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum. J. Eukaryot. Microbiol. 55, 515–21 (2008). PubMed
Zielinski F. U. et al.. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ. Microbiol. 11, 1150–1167 (2009). PubMed
Lagkouvardos I., Weinmaier T., Lauro F. M., Cavicchioli R., Rattei T. & Horn M. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. The ISME journal. 8, 115–125 (2014). PubMed PMC